高中数学线性规划经典题型(共2页).doc
《高中数学线性规划经典题型(共2页).doc》由会员分享,可在线阅读,更多相关《高中数学线性规划经典题型(共2页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考线性规划归类解析一、平面区域和约束条件对应关系。例1、已知双曲线的两条渐近线与直线围成一个三角形区域,表示该区域的不等式组是()(A) (B) (C) (D) 解析:双曲线的两条渐近线方程为,与直线围成一个三角形区域(如图4所示)时有。点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。例2:在平面直角坐标系中,不等式组表示的平面区域的面积是()(A) (B)4 (C) (D)2 解析:如图,作出可行域,易知不等式组表示的平面区域是一个三角形。容易求三角形的三个顶点坐标为(,),B(2,0),C(-2,0).于是三角形的面积为:从而选。点
2、评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 图1书、11二、已知线性约束条件,探求线性截距加减的形式(非线性距离平方的形式,斜率商的形式)目标关系最值问题(重点)例3、设变量x、y满足约束条件,则的最大值为。(截距)解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。则的最小值是 .的取值范围是 .三、 含参问题:(较难) 约束条件设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 线性规划 经典 题型
限制150内