整式的乘法与因式分解综合练习(共8页).doc
《整式的乘法与因式分解综合练习(共8页).doc》由会员分享,可在线阅读,更多相关《整式的乘法与因式分解综合练习(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上单项式与多项式相乘练习几点注意:1.单项式乘多项式的结果仍是多项式,积的项数与原多项式的项数相同。2.单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定:同号相乘得正,异号相乘得负. 3.不要出现漏乘现象,运算要有顺序。计算:a2(6ab); (2x)3(3xy)(-4x)(2x2+3x-1) a (2a3) a2 (13a) 3x(x22x1) 2x2y(3x22x3) (2x23xy+4y2)(2xy) 4x(2x23x1)(2a)(2a23a1) (ab22ab) ab (3x2yxy2)3xy 2x(x2x+1) (3x2)(4x2x1) (2ab2)
2、2(3a2b2ab4b3)5a(a23a+1)a2(1a) 2m2n(5mn)m(2m5n)阅读与思考:已知x2y=3,求2xy(x5y23x3y4x)的值 分析:考虑到x、y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入 解:2xy(x5y23x3y4x)=2x6y36x4y28x2y =2(x2y)36(x2y)28x2y =23363283=24 你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b23a2b+4a)(2b)的值多项式与多项式相乘练习友情提醒: 1.不要漏乘; 2.注意符号; 3.结果最简计算(a+4)(a+3) (3x1)( x2) (
3、2x5y)(3xy)(x8y)( xy) (x1)( 2x3) (m2n)(3mn) (x2)(x24) (xy) (x2xyy2)n(n1)(n2)(2x3y)(3x2y) (3x1)(4x5)(4xy)(5x2y)(x3)(x4)(x1)(x2)(x2)(x3)(x6)(x1)(3x2y)(2x3y)(x3y)(3x4y)填空:1、若(xa)(x2)x25xb,则a_,b_2. 若a2a12,则(5a)(6a)_3.若6x219x15(axb)(cxb),则acbd等于 . 平方差公式与完全平方公式练习(1)计算下列各式:(1) (2) (3)(4) (5) (6)(7)1、下列各式中哪些
4、可以运用平方差公式计算 (1) (2) (3) (4)2、判断:(1) ( ) (2) ( ) (3) ( )(4) ( ) (5) ( ) (6) ( )3、计算下列各式:(1) (2) (3) (4) (5)(6) 4、填空:(1) (2)(3) (4)五、拓展提升:1、求的值,其中 (2)3、若x、y的值吗?若能请你求出来.平方差公式与完全平方公式练习(2)1、下列各式中哪些可以运用完全平方公式计算 (1) (2) (3) (4)2、计算下列各式:(1) (2) (3) (4)(6) 1、填空:(1) (2)(3)2、计算: (2)(3) (4)(利用公式计算)(5)解方程:五、拓展提升
5、:1、化简再求的值,其中 2、若3、计算:(1) (2) (3) (4) 因式分解提公因式法练习公因式的组成:各项系数的最大公约数各项都有的相同字母的最低次幂注意:提公因式后的项数应与原多项式的项数一样,这样可检查是否漏项。把下列多项式分解因式:(1) (2)(3) (4) (5) (6) (7) (8) (1)对下列各式分解因式 (2) 能否被45整除?(3)已知,求的值因式分解之平方差公式法练习(1)x24x222 (x2)(x2) (2)x216 ( )2( )2 ( )( ) (3)9y2( )2( )2 ( )( )(4)1a2 ( )2( )2 ( )( ) 下列分解因式是否正确:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 乘法 因式分解 综合 练习
限制150内