高中数学-公式-柯西不等式(共3页).doc
《高中数学-公式-柯西不等式(共3页).doc》由会员分享,可在线阅读,更多相关《高中数学-公式-柯西不等式(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一课时 3.1 二维形式的柯西不等式(一)2. 练习:已知a、b、c、d为实数,求证 提出定理1:若a、b、c、d为实数,则. 证法一:(比较法)=.=证法二:(综合法) . (要点:展开配方) 证法三:(向量法)设向量,则,. ,且,则. . 证法四:(函数法)设,则0恒成立. 0,即.二维形式的柯西不等式的一些变式: 或 或. 提出定理2:设是两个向量,则. 即柯西不等式的向量形式(由向量法提出 ) 讨论:上面时候等号成立?(是零向量,或者共线) 练习:已知a、b、c、d为实数,求证. 证法:(分析法)平方 应用柯西不等式 讨论:其几何意义?(构造三角形)2.
2、教学三角不等式: 出示定理3:设,则.分析其几何意义 如何利用柯西不等式证明 变式:若,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)第二课时 3.1 二维形式的柯西不等式(二)教学过程:; 3. 如何利用二维柯西不等式求函数的最大值? 要点:利用变式.二、讲授新课:1. 教学最大(小)值: 出示例1:求函数的最大值? 分析:如何变形? 构造柯西不等式的形式 板演 变式: 推广: 练习:已知,求的最小值. 解答要点:(凑配法). 2. 教学不等式的证明: 出示例2:若,求证:.分析:如何变形后利用柯西不等式? (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 公式 不等式
限制150内