《排列与组合的概念》教案(共10页).doc
《《排列与组合的概念》教案(共10页).doc》由会员分享,可在线阅读,更多相关《《排列与组合的概念》教案(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上排列与组合的概念教案教学目标1正确理解排列、组合的意义2掌握写出所有排列、所有组合的方法,加深对分类讨论方法的理解3发展学生的抽象能力和逻辑思维能力教学重点与难点重点:正确理解两个原理(分类计数原理、分步计数原理)以及排列、组合的概念难点:区别排列与组合教学过程设计师:上节课我们学习了两个基本原理,请大家完成以下两题的练习:(用投影仪出示)1书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书(1)从中任取1本,有多少种取法?(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?2某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁
2、、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?(全体同学参加笔试练习)4分钟后,找一同学谈解答和怎样思考的?生:第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法根据分类计数原理,得到不同的取法种数是5040=90第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据分步计数原理,得到不同的取法种数是;5040=2000第2题说,共有A,B,C三个优良品种,而每
3、个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区所以共需35=15个实验小区师:学习了两个基本原理之后,继续学习排列和组合,什么是排列?什么是组合?这两个问题有什么区别和联系?这是我们讨论的重点先从实例入手:1北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?希望同学们设计好方案,踊跃发言生甲:首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要222=6种飞机票师:生甲用分类计数原理解决了准备多少种飞机票问题能不能用分步计数原理
4、来设计方案呢?生乙:首先确定起点站,在三个站中,任选一个站为起点站,有3种方法即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选那么,根据分步计数原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有32=6种师:根据生乙的分析写出所有种飞机票生丙:(板演)师:再看一个实例在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?请同学们谈谈自己想法生丁:事实上,红、黄、绿三面旗子
5、按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法剩下那面旗子,放在最低位置根据分步计数原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:321=6(种)师:根据生丁同学的分析,写出三面旗子同时升起表示信号的所有情况(包括每个位置情况)生戊:(板演)师:第三个实例,请全体同学都参加设计,把所有情况(包括每个位置情况)写出来由数字1,2,3,
6、4可以组成多少个没有重复数字的三位数?写出这些所有的三位数(教师在教室巡视,过3分钟找一同学板演)根据分步计数原理,从四个不同的数字中,每次取出三个排成三位数的方法共有432=24(个)师:请板演同学谈谈怎样想的?生:第一步,先确定百位上的数字在1,2,3,4这四个数字中任取一个,有4种取法第二步,确定十位上的数字当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法第三步,确定个位上的数字当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法根据分步计数原理,所以共有432=24种师:以上我们讨论了三个实例,这三个问题有什么共同的地方?生:都是从
7、一些研究的对象之中取出某些研究的对象师:取出的这些研究对象又做些什么?生:实质上按着顺序排成一排,交换不同的位置就是不同的情况师:请大家看书,第页、第行我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法第三个问题呢?生:从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法师:请看课本,第页,第行一般地说,从n个不同的元素
8、中,任取m(mn)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?生:从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同两个条件中,只要有一个条件不符合,就是不同的排列如第一个问题中,北京广州,上海广州是两个排列,第三个问题中,213与423也是两个排列再如第一个问题中,北京广州,广州北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排
9、列师:还需要搞清楚一个问题,“一个排列”是不是一个数?生:“一个排列”不应当是一个数,而应当指一件具体的事如飞机票“北京广州”是一个排列,“红黄绿”是一种信号,也是一个排列如果问飞机票有多少种?能表示出多少种信号只问种数,不用把所有情况罗列出来,才是一个数前面提到的第三个问题,实质上也是这样的师:下面我们进一步讨论:1在北京、上海、广州三个民航站之间的直达航线,有多少种不同的飞机票价与准备多少种不同的飞机票,有什么区别?2某班某小组五名同学在暑假互相都通信一次,打电话一次,通信的封数与打电话的次数是否一致?3有四个质数2,3,5,7两两分别作加法、减法、乘法、除法,所得到的和、差、积、商是否相
10、同?生A:我回答第1个问题前边已经讨论过有要准备6种飞机票,但票价只有三种,北京上海与上海北京,北京广州与广州北京,上海广州与广州上海票价是一样的,共有3种票价生B:我回答第2个问题举个例子,张玉同学给李刚同学写信,李刚同学给张玉同学写信,这样两封信才算彼此通了一次信而两人通一次电话,无论是张玉打给李刚的,还是李刚打给张玉的,两个人都同时参与了,彼此通了一次电话师:那么通了多少封信?打了多少次电话?生C:五个人都要给其他四位同学写信,54=20封关于打电话次数,我现在数一数:设五名同学的代号是a,b,c,d,e则ab,ac,ad,ae,bc,bd,be,cd,ce,de共十次生D:我回答第3个
11、问题减法与除法所得的差和商个数是同一个数,因为被减数与减数、被除数与除数交换位置所得的差与商是不同的加法与乘法所得的和与积个数是同一个数,根据加法、乘法交换律,被加数与加数,被乘数与乘数交换位置,和与积不受影响师:有多少个差与商?有多少个和与积?生E:2,3,5,7都可以做被减数和被除数,对于每一个被减数(或被除数)都对应着有3个数作减数(或除数),共有43=12个差或商把交换位置的情况除去,就是和或积的数字,即1226师:以上三个问题六件事,有什么共同点?再按类分,类与类之间有什么区别?区别在哪里?生:都是从一些元素中,任取某些元素的问题可以分两类一类属于前边学过的排列问题,即取出的元素要“
12、按照一定的顺序排成一列”,只要交换位置,就是不同的排列前边三个问题中的飞机票、通信封数、减法与除法运算的结果都属于这一类另一类是取出的元素,不必管顺序,只有取不同元素时,才是不同的情况,如飞机票价,打电话次数、加法与乘法运算的结果都属于这一类师:分析得很好,我们说后一类问题是从n个元素中任取m(mn)个元素,不管怎样的顺序并成一组,求一共有多少种不同的组如以上三个问题中飞机票价题是3组,打电话次数题是10组,和与积的个数题都是6组请同学们看课本,第页第行开始到第页第行结束(用5分钟时间学生读课本,教师巡视,回答学生提出的问题)师:组合这一节讲的主要内容是什么?生:组合定义;什么是相同的组合,什
13、么是不同的组合;排列与组合的区别;怎样写出某个组合问题的所有组合师:现在请同学们回答这四个问题每位同学只说一个问题生F:组合定义是从n个不同的元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合生G:如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当组合中的元素不完全相同时,才是不同的组合生H:排列与元素的顺序有关,组合与顺序无关如231与213是两个排列,231的和与213的和是一个组合生I:我举个例子前边生C同学提到的a,b,c,d,e这五个元素,写出每次取出2个元素的所有组合先把a从左到右依次与b,c,d,e组合,写出ab,ac,ad
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列与组合的概念 排列 组合 概念 教案 10
限制150内