人教版九年级下册数学各单元知识大全+测试卷(共45页).docx
《人教版九年级下册数学各单元知识大全+测试卷(共45页).docx》由会员分享,可在线阅读,更多相关《人教版九年级下册数学各单元知识大全+测试卷(共45页).docx(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上人教版九年级下册数学各单元知识大全+测试卷(附答案)第二十六章 二次函数一、二次函数1、一般地,如果是常数,那么叫做的二次函数。是自变量。其中,a是二次项系数;b一次项系数;c是常数项。2、二次函数由特殊到一般,可分为以下几种形式:;。3、二次函数的图象:是常数,的图像是抛物线。抛物线与它的对称轴的交点叫抛物线的顶点。顶点是抛物线的最高点或最低点。4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。(2)公式:,顶点是,对称轴是直线。5、二次函数的图象的特点:(1)抛物线的顶点是坐标原
2、点,对称轴是轴;(2)抛物线的顶点是(h,k),对称轴是x=h;(3)抛物线的顶点是(),对称轴是;当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点。a越大,开口越小。a越小,开口越大。(4)几种特殊的二次函数的图像特征如下表:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0, )(上下平移)(,0) (左右平移)(,)()二、二次函数与二元一次方程的关系二次函数 ,y=0时;二元一次方程;二次函数 ,y=0时, 自变量的取值是图像与轴的交点;求二元一次方程的两个根二次函数 ,y=0时,图像与轴有一个交点时;二元一次方程有两个相等的实数根二次
3、函数 ,y=0时,图像与轴有两个交点时;二元一次方程有两个不相等的实数根二次函数 ,y=0时,图像与轴没有交点时;二元一次方程没有实数根第二十七章 相似三角形一、1如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:)性质:相似多边形的对应角相等,对应边的比相等。2判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。 3相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形。 二、1性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。2判定.如果两个三角形的三组对应边的比相等,那么这两个三角形相似。如果
4、两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 (三边对应成比例两个三角形的两个角对应相等;两边对应成比例,且夹角相等;的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。)3相似三角形应用视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。4相似三角形的周长与面积:相似三角形周长的比等于相似比。相似多边形周长的比等于相似比。相似三角形面积的比等于相似比的平方。相似多边形面积的比等于相似比的平方。三、1:如果两个图形不仅是,而且每组对应点的连
5、线交于一点,对应边互相平行,那么这两个图形叫做,这个点叫做位似中心,这时的相似比又称为位似比。2性质:在平面直角体系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形的对应点的坐标的比等于k或-k。注意 1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形; 2、两个位似图形的位似中心只有一个; 3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧; 4、位似比就是相似比利用位似图形的定义可判断两个图形是否位似; 5位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。位似多边形的对应边平行或共线。位似
6、可以将一个图形放大或缩小。位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。6根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。 第二十八章 锐角三角函数一、锐角三角函数1正弦:在RtABC中,锐角A的对边a与斜边的比叫做A的正弦,记作sinA,即sinA=A的对边/斜边=a/c;2.余弦:在RtABC中,锐角A的邻边b与斜边的比叫做A的余弦,记作cosA,即cosA=A的邻边/斜边=b/c;3.正切:在RtABC中,锐角A的对边与邻边的比叫做A的正切,记作tanA,即tanA=A的对边/A的邻边=a/b。
7、tanA是一个完整的符号,它表示A的正切,记号里习惯省去角的符号“”;tanA没有单位,它表示一个比值,即直角三角形中A的对边与邻边的比;tanA不表示“tan”乘以“A”;tanA的值越大,梯子越陡,A越大;A越大,梯子越陡,tanA的值越大。4、余切:定义:在RtABC中,锐角A的邻边与对边的比叫做A的余切,记作cotA,即cotA=A的邻边/A的对边=b/a;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若A 为锐角,则sinA
8、 = cos(90A)等等。6、记住特殊角的三角函数值表0,30,45,60,90。7、当角度在090间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0sin1,0cos1。同角的三角函数间的关系:tancot=1,tan=sin/cos,cot=cos/sin,sin2+cos2=1二、解直角三角形1.解直角三角形: 在直角三角形中,由已知元素求未知元素的过程。2在解直角三角形的过程中用到的关系:(在ABC中,C为直角,A、B、C所对的边分别为a、b、c,)(1)三边之间的关系:a2+b2=c2;(勾股定理)(2)两锐
9、角的关系:AB=90;(3)边与角之间的关系:sinA =a/c;(a= c sinA) cosA =b/c;(b= c cosA) tanA=a/b。sinA= cosB cosA =sinB sinA= cos(90-A)sin2+cos2=1第二十九章投影与视图一、投影1投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做。 2:由平行光线形成的投影是。(光源特别远)3:由同一点(点光源发出的光线)形成的投影叫做4:投影线垂直于投影面产生的投影叫做。物体正投影的形状、大小与它相对于投影面的位置有关。5 当物体的某个面平行于
10、投影面时,这个面的正投影与这个面的形状、大小完全相同。当物体的某个面顶斜于投影面时,这个面的正投影变小。当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。二、三视图 1三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。三视图就是、的总称。另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。2主视图:在正面内得到的由前向后观察物体的视图。3俯视图:在水平面内得到的由上向下观察物体的视图。4左视图:在侧面内得到的由左向右观察物体的视图。5三个视图的位置关系:在上、在下、在右;主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体
11、的宽。主视、俯视 长对正 ,主视、左视 高平齐,左视、俯视 宽相等 。6画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。九年级下册数学各单元测试卷+答案二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x2的顶点坐标是 ,对称轴是 .2.函数y=(x2)2+1开口 ,顶点坐标为 ,当 时,y随x的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是 .4.一个关于x的二次函数,当x=2时,有最小值5,则这个二次函数图象开口一定 . 5.二次函数y=3x24x+1与x轴交点坐标 ,当 时,y0.6
12、.已知二次函数y=x2mx+m1,当m= 时,图象经过原点;当m= 时,图象顶点在y轴上.7.正方形边长是2cm,如果边长增加xcm,面积就增大ycm2,那么y与x的函数关系式是_.8.函数y=2(x3)2的图象,可以由抛物线y=2x2向 平移 个单位得到.9.当m= 时,二次函数y=x22xm有最小值5.10.若抛物线y=x2mx+m2与x轴的两个交点在原点两侧,则m的取值范围是 .二、选择题(每小题3分,共30分)11.二次函数y=(x3)(x+2)的图象的对称轴是( )A.x=3 B.x=3 C. D. 12.二次函数y=ax2+bx+c中,若a0,b0,c4.5 D.以上都不对14.二
13、次函数y=ax2+bx+c的图如图所示,则下列结论不正确的是( )A.a0 B.b24ac0 C.ab+c015.函数是二次函数,则它的图象( )A.开口向上,对称轴为y轴 B.开口向下,顶点在x轴上方C.开口向上,与x轴无交点 D.开口向下,与x轴无交点16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,则铅球落地水平距离为( )A.m B.3m C.10m D.12m17.抛物线y=ax2+bx+c与y轴交于A点,与x轴的正半轴交于B、C两点,且BC=2,SABC=4,则c的值( )A.5 B.4或4 C.4 D.418.二次函数y=ax2+bx+c的图象如图所示,则此
14、函数解析式为( )A.y=x2+2x+3 B.y=x22x3 C.y=x22x+3 D.y= x22x3 19.函数y=ax2+bx+c和y=ax+b在同一坐标系中大致图象是( )20.若把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2,则( )A.b=2,c=3 B.b=2,c=3 C.b=4,c=1 D.b=4,c=7三、计算题(共38分)21.已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为1,2,且抛物线经过点(3,8),求这条抛物线的解析式。(9分)22.已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函
15、数y=x+m的图象交于(0,1)。(1)求两个函数解析式;(2)求两个函数图象的另一个交点。(9分)23.四边形EFGH内接于边长为a的正方形ABCD,且AE=BF=CG=DH,设AE=x,四边形EFGH的面积为y。(1)写出y与x之间的函数关系式和x的取值范围;(2)点E在什么位置时,正方形EFGH的面积有最小值?并求出最小值。(10分)24.已知抛物线经过直线y=3x3与x轴,y轴的交点,且经过(2,5)点。求:(1)抛物线的解析式;(2)抛物线的顶点坐标及对称轴;(3)当自变量x在什么范围变化时,y随x的增大而减小。(10分)四、 提高题:(10分)25.已知抛物线y=x2+2(m+1)
16、x+m+3与x轴有两个交点A,B与y轴交于点C,其中点A在x轴的负半轴上,点B在x轴的正半轴上,且OA:OB=3:1。(1)求m的值;(2)若P是抛物线上的点,且满足SPAB=2SABC,求P点坐标。26.二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C。(1)求A、B、C三点的坐标;(2)如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)是否存在这样的点P,使得PO=PA,若存在,求出点P的坐标;若不存在,说明理由。27.如图,在直角坐标平面中,O为坐标原点,二次函数的图象与y轴的负半轴相交于点C,点
17、C的坐标为(0,3),且BOCO.(1)求出B点坐标和这个二次函数的解析式;(2)求ABC的面积。(3)设这个二次函数的图象的顶点为M,求AM的长.相似三角形测试题一、选择题:1、下列命题中正确的是( )三边对应成比例的两个三角形相似 二边对应成比例且一个角对应相等的两个三角形相似 一个锐角对应相等的两个直角三角形相似 一个角对应相等的两个等腰三角形相似 A、 B、 C、 D、2、如图,已知DEBC,EFAB,则下列比例式中错误的是( )A B C D 3、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ABE和ACD相似的是( )A. B=C B. ADC=AEB
18、C. BE=CD,AB=AC D. ADAC=AEAB4、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形( )A 1对 B 2对 C 3对 D 4对5、在矩形ABCD中,E、F分别是CD、BC上的点,若AEF=90,则一定有 ( )A ADEAEF B ECFAEF C ADEECF D AEFABF6、如图1,若,则与的相似比是( )A1:2 B1:3 C2:3 D3:27、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( )A19 B17 C24 D218、在比例尺为1:5000的地图上,量得甲,乙
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 下册 数学 单元 知识 大全 测试 45
限制150内