2012年浙江省宁波市中考数学试卷及详细解答(共21页).doc
《2012年浙江省宁波市中考数学试卷及详细解答(共21页).doc》由会员分享,可在线阅读,更多相关《2012年浙江省宁波市中考数学试卷及详细解答(共21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2012年浙江省宁波市中考数学试卷参考答案与试题解析一选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1(2012宁波)(2)0的值为()A2B0C1D2考点:零指数幂。分析:根据零指数幂的运算法则求出(2)0的值解答:解:(2)0=1故选C点评:考查了零指数幂:a0=1(a0),由amam=1,amam=amm=a0可推出a0=1(a0),注意:0012(2012宁波)下列交通标志图案是轴对称图形的是()ABCD考点:轴对称图形。专题:常规题型。分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解解答:解:A、不是轴对称图形,故本
2、选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选B点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3(2012宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()ABCD1考点:概率公式。分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,白球的数目为2解答:解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任
3、意摸出1个,摸到白球的概率是:23=故选A点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=4(2012宁波)据宁波市统计局年报,去年我市人均生产总值为元,元用科学记数法表示为()A1.04485106元B0.106元C1.04485105元D10.4485104元考点:科学记数法表示较大的数。专题:常规题型。分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于有6位,所以可以确定n=61=5解答:解:=1.04485105故选C点评:此题考查科学记数法表示较大的数的方法,准确
4、确定n值是关键5(2012宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:),则这组数据的极差与众数分别为()A2,28B3,29C2,27D3,28考点:极差;众数。专题:常规题型。分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可解答:解:这组数中,最大的数是30,最小的数是27,所以极差为3027=3,29出现了3次,出现的次数最多,所以,众数是29故选B点评:本题考查了极差与众数的概念,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值6(2012宁波)
5、下列计算正确的是()Aa6a2=a3B(a3)2=a5CD考点:立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法。专题:计算题。分析:根据同底数幂的除法、幂的乘方、平方根、立方根的定义解答解答:解:A、a6a2=a62=a4a3,故本选项错误;B、(a3)2=a32=a6a5,故本选项错误;C、=5,表示25的算术平方根式5,5,故本选项错误;D、,故本选项正确故选D点评:本题考查了立方根、算术平方根、幂的乘方与积的乘方、同底数幂的除法,是一道基础题7(2012宁波)已知实数x,y满足,则xy等于()A3B3C1D1考点:非负数的性质:算术平方根;非负数的性质:偶次方。专题:常规题型。分
6、析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解解答:解:根据题意得,x2=0,y+1=0,解得x=2,y=1,所以,xy=2(1)=2+1=3故选A点评:本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键8(2012宁波)如图,在RtABC中,C=90,AB=6,cosB=,则BC的长为()A4B2CD考点:锐角三角函数的定义。分析:根据cosB=,可得=,再把AB的长代入可以计算出CB的长解答:解:cosB=,=,AB=6,CB=6=4,故选:A点评:此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的
7、邻边b与斜边c的比叫做A的余弦9(2012宁波)如图是某物体的三视图,则这个物体的形状是()A四面体B直三棱柱C直四棱柱D直五棱柱考点:由三视图判断几何体。分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答:解:只有直三棱柱的视图为1个三角形,2个矩形故选B点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力10(2012宁波)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是()A41B40C39D38考点
8、:专题:正方体相对两个面上的文字。专题:常规题型。分析:先求出所有面上的点数的总和,然后减去看得见的7个面上的点数的和,然后根据有理数的混合运算计算即可得解解答:解:三个骰子18个面上的数字的总和为:3(1+2+3+4+5+6)=321=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以,看不见的面上的点数总和是6324=39故选C点评:本题考查了正方体相对面上的文字,利用整体思想,把所有的面分成看得见的面与看不见的面两个部分是解题的关键11(2012宁波)如图,用邻边分别为a,b(ab)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小
9、圆把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()Ab=aBb=aCb=Db=a考点:圆锥的计算。分析:首先利用圆锥形圣诞帽的底面周长等于侧面的弧长求得小圆的半径,然后利用两圆外切的性质求得a、b之间的关系即可解答:解:半圆的直径为a,半圆的弧长为把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,设小圆的半径为r,则:2r=解得:r=如图小圆的圆心为B,半圆的圆心为C,作BACA于A点,则:AC2+AB2=BC2即:()2+()2=()2整理得:b=a故选D点评:本题考查了圆锥的计算,解题的关键是利用两圆相外切的性质得到两圆
10、的圆心距,从而利用勾股定理得到a、b之间的关系12(2012宁波)勾股定理是几何中的一个重要定理在我国古算书周髀算经中就有“若勾三,股四,则弦五”的记载如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理图2是由图1放入矩形内得到的,BAC=90,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A90B100C110D121考点:勾股定理的证明。专题:常规题型。分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解
11、解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为1011=110故选C点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键二填空题(每小题3分,共18分)13(2012宁波)写出一个比4小的正无理数(答案不唯一)考点:实数大小比较。专题:开放型。分析:根据实数的大小比较法则计算即可解答:解:此题答案不唯一,举例如:、等故答案为:(答案不唯一)点评:本题考查了实数的大小比较,解题的关键是理解正无理数这一概念14(2012宁波)分式方程的
12、解是x=8考点:解分式方程。分析:观察可得最简公分母是2(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答:解:方程的两边同乘2(x+4),得2(x2)=x+4,2x4=x+4,解得x=8检验:把x=8代入x(x+4)=960故原方程的解为:x=8故答案为:x=8点评:考查了解分式方程(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根15(2012宁波)如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是5人考点:扇形统计图。专题:计算题。分析:根据参加外语
13、兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答解答:解:参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,参加课外兴趣小组人数的人数共有:24%=50(人),绘画兴趣小组的人数是50(114%36%16%24%)=5(人)故答案为5点评:本题考查了扇形统计图,从图中找到相关信息是解此类题目的关键16(2012宁波)如图,AEBD,C是BD上的点,且AB=BC,ACD=110,则EAB=40度考点:等腰三角形的性质;平行线的性质。分析:首先利用ACD=110求得ACB与BAC的度数,然后利用三角形内角和定理求得
14、B的度数,然后利用平行线的性质求得结论即可解答:解:AB=BC,ACB=BACACD=110ACB=BAC=70B=40,AEBD,EAB=40,故答案为40点评:本题考查了等腰三角形的性质及平行线的性质,题目相对比较简单,属于基础题17(2012宁波)把二次函数y=(x1)2+2的图象绕原点旋转180后得到的图象的解析式为y=(x+1)22考点:二次函数图象与几何变换。分析:根据顶点式解析式求出原二次函数的顶点坐标,然后根据关于中心对称的点的横坐标与纵坐标互为相反数求出旋转后的二次函数的顶点坐标,最后根据旋转变换只改变图形的位置,不改变图形的形状写出解析式即可解答:解:二次函数y=(x1)2
15、+2顶点坐标为(1,2),绕原点旋转180后得到的二次函数图象的顶点坐标为(1,2),所以,旋转后的新函数图象的解析式为y=(x+1)22故答案为:y=(x+1)22点评:本题考查了二次函数图象与几何变换,利用点的变换解决函数图象的变换,求出变换后的顶点坐标是解题的关键18(2012宁波)如图,ABC中,BAC=60,ABC=45,AB=2,D是线段BC上的一个动点,以AD为直径画O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为考点:垂径定理;圆周角定理;解直角三角形。分析:由垂线段的性质可知,当AD为ABC的边BC上的高时,直径AD最短,此时线段EF最短,连接OE,OF,过O点
16、作OHEF,垂足为H,在RtADB中,解直角三角形求直径AD,由圆周角定理可知EOH=EOF=BAC=60,在RtEOH中,解直角三角形求EH,由垂径定理可知EF=2EH解答:解:如图,连接OE,OF,过O点作OHEF,垂足为H,在RtADB中,ABC=45,AB=2,AD=BD=2,即此时圆的直径为2,由圆周角定理可知EOH=EOF=BAC=60,在RtEOH中,EH=OEsinEOH=1=,由垂径定理可知EF=2EH=,故答案为:点评:本题考查了垂径定理,圆周角定理,解直角三角形的综合运用关键是根据运动变化,找出满足条件的最小圆,再解直角三角形三解答题(本大题有8题,共66分)19(201
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 浙江省 宁波市 中考 数学试卷 详细 解答 21
限制150内