最小二乘法曲线拟合-原理及matlab实现(共10页).doc
《最小二乘法曲线拟合-原理及matlab实现(共10页).doc》由会员分享,可在线阅读,更多相关《最小二乘法曲线拟合-原理及matlab实现(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上曲线拟合(curve-fitting):工程实践中,用测量到的一些离散的数据求一个近似的函数来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使最好地逼近,而不必满足插值原则。因此没必要取=,只要使尽可能地小)。原理:给定数据点。求近似曲线。并且使得近似曲线与的偏差最小。近似曲线在该点处的偏差,i=1,2,.,m。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。推导过程: 1. 设拟合多项式为: 2.
2、各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数.对等式右边求偏导数,因而我们得到了: . 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y,那么A = (X*X)-1*X*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。调用格式:p=polyfit(x,y,n) p,s= polyfit(x,y,n) p,s,mu=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项
3、式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 p,s,mu=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) y,DELTA=polyval(p,x,s)y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。y,DELTA=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA
4、。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。如下给定数据的拟合曲线:x=0.5,1.0,1.5,2.0,2.5,3.0,y=1.75,2.45,3.81,4.80,7.00,8.60。解:MATLAB程序如下:x=0.5,1.0,1.5,2.0,2.5,3.0;y=1.75,2.45,3.81,4.80,7.00,8.60;p=polyfit(x,y,2)x1=0.5:0.05:3.0;y1=polyval(p,x1);plot(x,y,*r,x1,y1,-b)运行结果如图1计算结果为:p =0.5614 0.8287 1.1
5、560即所得多项式为y=0.5614x2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例对比检验拟合的有效性:例:在0,区间上对正弦函数进行拟合,然后在0,2区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。在MATLAB中输入如下代码:clearx=0:0.1:pi;y=sin(x);p,mu=polyfit(x,y,9)x1=0:0.1:2*pi;y1=sin(x1);%实际曲线y2=polyval(p,x1);%根据由区间0到pi上进行拟合得到的多项式计算0到2pi上的函数值, %需要注意的是polyval()返回的函数值在pi到2pi上并没有进行拟合plo
6、t(x1,y2,k*,x1,y1,k-)运行结果:p = 0.0000 0.0000 -0.0003 0.0002 0.0080 0.0002 -0.1668 0.0000 1.0000 0.0000mu = R: 10x10 double df: 22 normr: 1.6178e-07MATLAB的最优化工具箱还提供了lsqcurvefit()函数命令进行最小二乘曲线拟合(Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense)。调用格式:x = lsqcurvefit(fun,x0,xdat
7、a,ydata)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)x = lsqcurvefit(problem)x,resnorm = lsqcurvefit(.)x,resnorm,residual = lsqcurvefit(.)x,resnorm,residual,exitflag = lsqcurvefit(.)x,resnorm,residual,exitflag,output = lsqcurvefit(.)x,resnorm,residual,exi
8、tflag,output,lambda = lsqcurvefit(.)x,resnorm,residual,exitflag,output,lambda,jacobian = x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;lb、ub为解向量的下界和上界 ,若没有指定界,则lb= ,ub= ;options为指定的优化参数;fun为拟合函数,其定义方式为:x = lsqcurvefit(myfun,x0,xdata,ydata),其中myfun已定义为 function F = myfun(x,xdata)F = % 计算x处拟合函数值fun的用法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最小二乘法 曲线拟合 原理 matlab 实现 10
限制150内