建环专业英语(共11页).doc
《建环专业英语(共11页).doc》由会员分享,可在线阅读,更多相关《建环专业英语(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上建筑环境与设备工程专业英语翻译A thermodynamic system is a region in space or a quantity of matter bounded by a closed surface. The surroundings include everything external to the system, and the system is separated from the surroundings by the system boundaries. These boundaries can be movable or fixe
2、d, real or imaginary.一个热力学系统是一个在空间或有事项的数量由一个封闭的表面范围内的区域。周围环境包括一切外部系统,系统是从周围环境隔开的系统边界。这些边界可以是动产或固定的,真实的或想象。The concepts that operate in any thermodynamic system are entropy and energy. Entropy measures the molecular disorder of a system. The more mixed a system, the greater its entropy; conversely, a
3、n orderly or unmixed configuration is one of low entropy. Energy has the capacity for producing an effect and can be categorized into either stored or transient forms as described in the following sections.熵和能量的概念,在任何热力学系统操作。熵措施分子系统紊乱。更为复杂的系统,其熵值越大,反之,有序或纯配置是低熵之一。能源已经产生效果的能力,并在下面的章节中所述,可以存储或短暂形式分类。H
4、eat Q is the mechanism that transfers energy across the boundaries of systems with differing temperatures, always toward the lower temperature. Heat is positive when energy is added to the system.Work is the mechanism that transfers energy across the boundaries of systems with differing pressures (o
5、r force of any kind), always toward the lower pressure. If the total effect produced in the system can be reduced to the raising of a weight, then nothing but work has crossed the boundary. Work is positive when energy is removed from the system. 热量Q与不同的温度,跨系统的边界传输能量总是向温度较低的机制。热是积极的,当能量被添加到系统中。功是指通过
6、存在压差(任一种力)的系统边界传递能量的作用过程,总是指向低压,如果系统中产生的总效果能被简化为一个重物的提升,那么只有功通过了边界,当能量从系统中一出时,功是正的。A property of a system is any observable characteristic of the system. The state of a system is defined by listing its properties. The most common thermodynamic properties are temperature T, pressure p, and specific v
7、olume v or density . Additional thermodynamic properties include entropy, stored forms of energy, and enthalpy.Frequently, thermodynamic properties combine to form other properties. Enthalpy h, a result of combining properties, is defined as: h=u+pv where u is the internal energy per unit mass系统属性是系
8、统的任何观察到的特征。系统状态的定义是通过列出其属性。最常见的热力学性质的温度T,压力P,和特定的体积V或密度。其他热力学性质 包括熵,能量储存形式,和焓。通常情况下,热力学性质相结合,形成其他属性。焓H,一个属性相结合的结果,被定义为:H = U + PV其中u是每单位质量的内部能量Each property in a given state has only one definite value, and any property always has the same value for a given state, regardless of how the substance arr
9、ived at that state.A process is a change in state that can be defined as any change in the properties of a system. A process is described by specifying the initial and final equilibrium states, the path (if identifiable), and the interactions that take place across system boundaries during the proce
10、ss.一个给定的状态的属性只有一个定值,和任何财产总是有相同的值给定的状态,不管物质如何达到那种状态。一个进程是一个状态的改变,在系统属性的任何改变,可作为定义。一个过程是指定的初始和最终的平衡状态,路径(如果识别),并采取跨系统的边界,在这个过程中发生的相互作用。A pure substance has a homogeneous and invariable chemical composition. It can exist in more than one phase, but the chemical composition is the same in all phases 一个周
11、期进程的一个过程或一个系列,其中系统的初始和最终状态是相同的的。因此,在一个周期结束时,所有属性具有相同的价值纯物质具有均匀的和不变的化学成分。它可以存在于超过一个阶段,但在各个阶段的化学成分是一样的liquid. If the temperature of the liquid is lower than the saturation temperature for the existing pressure, it is called either a subcooled liquid (the temperature is lower than the saturation temper
12、ature for the given pressure) or a compressed liquid (the pressure is 如果一种物质在饱和温度和压力的液体,它被称为饱和液体。如果液体的温度低于现有的压力的饱和温度,它被称为是过冷液体(温度低于给定压力的饱和温度)或压缩液体(压力大于饱和为给定的温度压力)。exists as a vapor at saturation temperature and pressure, it is called a saturated vapor. When the vapor is at a temperature greater than
13、 the saturation temperature, it is a superheated vapor. Pressure and temperature of a superheated vapor are independent properties, because the temperature can increase while pressure remains constant. Gases such as air at room temperature and pressure are highly 如果一种物质在饱和温度和压力的蒸气存在,它被称为饱和蒸气。当蒸汽温度大于
14、饱和温度,它是一个热蒸气。过热蒸汽压力和温度是独立的属性,因为温度增加,而压力保持不变。如在常温常压下空气的气体是高度过热蒸汽。and the irreversibility associated with the process. The concept of irreversibility provides added insight into the operation of cycles.热力学第二定律的区别和量化,只有在某一个方向,是可逆的(不可逆)进行的过程。第二定律可能在几个方面。一种方法是使用在一个开放的系统,并与进程关联的不可逆性的熵流的概念。不可逆转的概念到周期的运作提供额
15、外的洞察力。The Carnot cycle, which is completely reversible, is a perfect model for a refrigeration cycle operating between two fixed temperatures, or between two fluids at different temperatures and each with infinite heat capacity. Reversible cycles have two important properties: (1) no refrigerating c
16、ycle may have a coefficient of performance higher than that for a reversible cycle operated between the same temperature limits, and (2) all reversible cycles, when operated between the same temperature limits, have the same coefficient of performance 卡诺循环,这是完全可逆的,是一个完美的模型之间的两个固定的温度,或在不同温度和热容量无限每个的两
17、种流体之间的制冷循环的运行。可逆循环有两个重要的属性:(1)无制冷循环的性能系数之间相同的温度限制经营的可逆循环高于,(2)之间相同的温度极限运行时,所有可逆循环,同样的性能系数Flowing fluids in heating, ventilating, air-conditioning, and refrigeration systems can transfer heat, mass, and momentum. This chapter introduces the basics of fluid mechanics related to HVAC processes, reviews
18、 pertinent flow processes, and presents a general discussion of single-phase fluid flow analysis.流动的液体在加热,通风,空调和制冷系统,可以传递热量,质量和动量。本章介绍有关暖通空调过程的流体力学,评论相关的流程,基础知识,并提出了一种单相流体流动分析的一般性讨论。Fluids differ from solids in their reaction to shearing. When placed under shear stress, a solid deforms only a finite
19、 amount, whereas a fluid deforms continuously for as long as the shear is applied. Both liquids and gases are fluids. Although liquids and gases differ strongly in the nature of molecular actions, their primary mechanical differences are in the degree of compressibility and liquid formation of a fre
20、e surface. In general, liquids are considered incompressible fluids; gases may range from compressible to nearly incompressible.流体与固体区别在于他们对剪切力的反应作用。在施加剪切力时,固体只发生有限的变形,而只要有剪切力的作用流体就会连续变形。流体不同于固体剪切他们的反应。当剪切应力下了坚实的变形量只有有限的,而流体的剪切变形。液体和气体都是流体。虽然液体和气体的分子运动特性有着很大的区别,但是他们的主要的力学区别在于可压缩性的程度和液体自由表面(界面)的形成。在一
21、般来说,液体被认为是不可压缩的流体,气体可能范围从可压缩到几乎不可。Viscosity is a measure of a fluids resistance to shear. Viscous effects are taken into account by categorizing a fluid as either Newtonian or non-Newtonian. In Newtonian fluids, the rate of deformation is directly proportional to the shearing stress; most fluids in
22、the HVAC industry (e.g., water, air, most refrigerants) can be treated as Newtonian. In non-Newtonian fluids, the relationship between the rate of deformation and shear stress is more complicated.粘度是流体的抗剪切的措施。考虑采取分类流体为牛顿或非牛顿粘性的影响。在牛顿流体,变形率是成正比的剪应力;在暖通空调行业(如,水,空气,大部分制冷剂)牛顿流体可以作为治疗。在非牛顿流体,变形和剪切应力率之间的关
23、系更为复杂。Heat is energy in transit due to a temperature difference. The thermal energy is transferred from one region to another by three modes of heat transfer: conduction, convection, and radiation. Heat transfer is among a group of energy transport phenomena that includes mass transfer, momentum tra
24、nsfer or fluid friction and electrical conduction.热是由于温差在传输过程中的能量。热能是从一个地区转移到另一个传热的三种模式:传导,对流和辐射。传热之间的能源运输的现象,其中包括传质,动量传递或流体摩擦和导电。Thermal conduction is the mechanism of heat transfer whereby energy is transported between parts of continuum by the transfer of kinetic energy between particles or group
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专业 英语 11
限制150内