教案:变化率与导数、导数的计算 (共10页).doc
《教案:变化率与导数、导数的计算 (共10页).doc》由会员分享,可在线阅读,更多相关《教案:变化率与导数、导数的计算 (共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上变化率与导数、导数的计算一、导数的概念1函数yf(x)在xx0处的导数(1)定义:称函数yf(x)在xx0处的瞬时变化率 为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,即f(x0) .(2)几何意义:函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数)相应地,切线方程为yf(x0)f(x0)(xx0)2函数f(x)的导函数称函数f(x) 为f(x)的导函数二、基本初等函数的导数公式原函数导函数f(x)c(c为常数)f(x)0f(x)xn(nQ*)f(x)nx
2、n1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)axf(x)axln_af(x)exf(x)exf(x)logaxf(x)f(x)ln xf(x)三、导数的运算法则1f(x)g(x)f(x)g(x);2f(x)g(x)f(x)g(x)f(x)g(x);3.(g(x)0)(理)4.复合函数的导数复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux,即y对x的导数等于y对u的导数与u对x的导数的乘积基础自测1若f(x)xex,则f(1)()A0BeC2e De2解析:选Cf(x)exxex,f(1)2e.2曲线yxln x在点(e
3、,e)处的切线与直线xay1垂直,则实数a的值为()A2 B2C. D解析:选A依题意得y1ln x,yxe1ln e2,所以21,a2.3某质点的位移函数是s(t)2t3gt2(g10 m/s2),则当t2 s时,它的加速度是()A14 m/s2 B4 m/s2C10 m/s2 D4 m/s2解析:选A由v(t)s(t)6t2gt,a(t)v(t)12tg,得t2时,a(2)v(2)1221014(m/s2)4曲线yx3x3在点(1,3)处的切线方程为_解析:y3x21,yx131212.该切线方程为y32(x1),即2xy10.答案:2xy105函数yxcos xsin x的导数为_解析:
4、y(xcos x)(sin x)xcos xx(cos x)cos xcos xxsin xcos xxsin x.答案:xsin x题型1利用导数的定义求函数的导数例1用定义法求下列函数的导数(1)yx2;(2)y.自主解答(1)因为2xx,所以y (2xx)2x.(2)因为y,4,所以 .变式练习1一质点运动的方程为s83t2.(1)求质点在1,1t这段时间内的平均速度;(2)求质点在t1时的瞬时速度(用定义及导数公式两种方法求解)解:(1)s83t2,s83(1t)2(8312)6t3(t)2,63t.(2)法一(定义法):质点在t1时的瞬时速度vli li (63t)6.法二(导数公式
5、法):质点在t时刻的瞬时速度vs(t)(83t2)6t.当t1时,v616.题型2导数的运算例2求下列函数的导数(1)yx2sin x;(2)y; 自主解答(1)y(x2)sin xx2(sin x)2xsin xx2cos x.(2)y.则y(ln u)u2,即y.变式练习2求下列函数的导数(1)yexln x;(2)yx;解:(1)y(exln x)exln xexex.(2)yx31,y3x2.题型3导数的几何意义例3(1)曲线yx311在点P(1,12)处的切线与y轴交点的纵坐标是()A9B3 C9 D15(2)设函数f(x)g(x)x2,曲线yg(x)在点(1,g(1)处的切线方程为
6、y2x1,则曲线yf(x)在点(1,f(1)处切线的斜率为()A B2 C4 D自主解答(1)y3x2,故曲线在点P(1,12)处的切线斜率是3,故切线方程是y123(x1),令x0得y9.(2)曲线yg(x)在点(1,g(1)处的切线方程为y2x1,g(1)k2.又f(x)g(x)2x,f(1)g(1)24,故切线的斜率为4.答案(1)C(2)C变式练习3(1)曲线yx(3ln x1)在点(1,1)处的切线方程为_(2)直线yxb与曲线yxln x相切,则b的值为()A2 B1C D1解析:(1)y3ln x13,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y14(x1),即y4x
7、3.(2)设切点的坐标为,依题意,对于曲线yxln x,有y,所以,得a1.又切点 在直线yxb上,故b,得b1.答案:(1)y4x3(2)B课后练习A组1函数f(x)(x2a)(xa)2的导数为()A2(x2a2)B2(x2a2)C3(x2a2) D3(x2a2)解析:选Cf(x)(xa)2(x2a)2(xa)3(x2a2)2已知物体的运动方程为st2(t是时间,s是位移),则物体在时刻t2时的速度为()A. B.C. D.解析:选Ds2t,s|t24.3已知a为实数,函数f(x)x3ax2(a2)x的导函数f(x)是偶函数,则曲线yf(x)在原点处的切线方程为()Ay3x By2xCy3x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案:变化率与导数、导数的计算 共10页 教案 变化 导数 计算 10
限制150内