《自动洗衣机行星齿轮传动设计(共33页).doc》由会员分享,可在线阅读,更多相关《自动洗衣机行星齿轮传动设计(共33页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上摘 要 本课题是有关一种自动洗衣机减速离合器内部减速装置行星轮系减速器的设计。在洗衣机中使用行星轮系减速器正是利用了行星齿轮传动:体积小,质量小,结构紧凑,承载能力大;传动效率高;传动比较大;运动平稳、抗冲击和震动的能力较强、噪声低的特点。行星轮减速其实就是齿轮减速的原理,它有一个轴线位置固定的齿轮叫中心轮或太阳轮,在太阳轮边上有轴线变动的齿轮,即既作自转又作公转的齿轮叫行星轮,行星轮有支持构件叫行星架,通过行星架将动力传到轴上,再传给其它齿轮.它们由一组若干个齿轮组成一个轮系.只有一个原动件,这种周转轮系称为行星轮系。关键词:行星轮系减速器;太阳轮;行星架。专心-专
2、注-专业目 录第一章 概述 4 第二章 原始数据及系统组成 5(一)原始数据2(二)系统组成框图2第三章 减速器简介 4第四章 传动系统的方案设计 5传动方案的分析与拟定51.对传动方案的要求52.拟定传动方案5第五章 行星齿轮传动设计 6 (一)行星齿轮传动比和效率计算 6 (二)行星齿轮传动的配齿计算 61.传动比条件62.同轴条件63.装配条件74.邻接条件7 (三)行星齿轮传动的几何尺寸和啮合参数计算 8 (四)行星齿轮传动强度计算及校核10 1、行星齿轮弯曲强度计算及校核102、齿轮齿面强度的计算及校核113、有关系数和接触疲劳极限11(五)行星齿轮传动的受力分析 13(六)行星齿轮
3、传动的均载机构及浮动量 15(七)轮间载荷分布均匀的措施15第六章 行星轮架与输出轴间齿轮传动的设计17(一)选择齿轮材料及精度等级 17(二)按齿面接触疲劳强度设 17(三)按齿根弯曲疲劳强度计算 18(四)主要尺寸计算 18(五)验算齿轮的圆周速度v 18第七章 行星轮系减速器齿轮输入输出轴的设计19(一)减速器输入轴的设计191、选择轴的材料,确定许用应力192、按扭转强度估算轴径193、确定各轴段的直径194、确定各轴段的长度195、校核轴19(二)行星轮系减速器齿轮输出轴的设计211、选择轴的材料,确定许用应力212、按扭转强度估算轴径213、确定各轴段的直径214、确定各轴段的长度
4、215、校核轴 22第八章 结论24第九章 参考文献25第十章 设计小结26第十一章 致谢27第一章 概述行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用。同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂。但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器。根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设
5、计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算。行星齿轮传动根据基本够件的组成情况可分为:2KH、3K、及KHV三种。若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等。我所设计的行星齿轮是2KH行星传动NGW型。第二章 原始数据及系统组成框图(一)有关原始数据课题: 一种自动洗衣机行星轮系减速器的设计 原始数据及工作条件: 使用地点:自动洗衣机减速离合器内部减速装置;传动比:=5.2输入转速:n=2600r/min输入功率:P=150w行星轮个数:=3内齿圈齿数=63(二)系统组成框图图2-1 自动洗衣机的组成简图 上盖控制面板
6、进水口排水管外箱体盛水桶支撑拉杆脱水桶电动机带传动减速器波轮洗涤:A制动,B放开,运动经电机、带传动、中心齿轮、行星轮、行星架、波轮脱水:A放开,B制动,运动经电机、带传动、内齿圈(脱水桶)、中心齿轮、行星架、波轮与脱水桶等速旋转。AB带传动脱水桶波轮自动洗衣机的工作原理:见图2-2图2-2 洗衣机工作原理图(电机输入转速)输入轴中心轮行星轮输出轴图2-3 减速器系统组成框图 第三章 减速器简介减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。减速器降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。降速同
7、时降低了负载的惯量,惯量的减少为减速比的平方。一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。1) 蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。2) 谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金
8、属件相比较差。输入转速不能太高。3) 行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。第四章 传动系统的方案设计传动方案的分析与拟定1)对传动方案的要求 合理的传动方案,首先应满足工作机的功能要求,还要满足工作可靠、传动精度高、体积小、结构简单、尺寸紧凑、重量轻、成本低、工艺性好、使用和维护方便等要求。2)拟定传动方案任何一个方案,要满足上述所有要求是十分困难的,要统筹兼顾,满足最主要的和最基本的要求。例如图1-1所示为作者拟定的传动方案,适于在恶劣环境下长期连续工作。图4-1 周转轮系 a-中心轮;g-行星轮;b-内齿圈;H-行星架第五章 行星齿
9、轮传动设计(一)行星齿轮传动的传动比和效率计算 行星齿轮传动比符号及角标含义为: 1固定件、2主动件、3从动件 1、齿轮b固定时(图11),2KH(NGW)型传动的传动比为 =1-=1+/可得 =1-=1-=1-5.2=-4.2 =/-1=63*5/21=15输出转速: =/=n/=2600/5.2=500r/min2、行星齿轮传动的效率计算: =1-|-/(-1)* |*=为ag啮合的损失系数,为bg啮合的损失系数,为轴承的损失系数, 为总的损失系数,一般取=0.025按=2600 r/min、=500r/min、=-21/5可得=1-|-/(-1)* |*=1-|2600-500/(-4.
10、2-1)*500|*0.025=97.98%(二) 行星齿轮传动的配齿计算1、传动比的要求传动比条件即 =1+/可得 1+/=63/5=21/5=4.2 =所以中心轮a和内齿轮b的齿数满足给定传动比的要求。2、保证中心轮、内齿轮和行星架轴线重合同轴条件为保证行星轮与两个中心轮、同时正确啮合,要求外啮合齿轮ag的中心距等于内啮合齿轮bg的中心距,即 = 称为同轴条件。对于非变位或高度变位传动,有 m/2(+)=m/2(-)得 =-/2=63-15/2=243、保证多个行星轮均布装入两个中心轮的齿间装配条件想邻两个行星轮所夹的中心角=2/中心轮a相应转过角,角必须等于中心轮a转过个(整数)齿所对的
11、中心角,即 =*2/式中2/为中心轮a转过一个齿(周节)所对的中心角。 =n/=/=1+/将和代入上式,有 2*/2/=1+/经整理后=+=(15+63)/2=24满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。4、保证相邻两行星轮的齿顶不相碰邻接条件在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图12所示 图5-1 行星齿轮可得 l=2* l=2*2/m*(+)*sin=39/2m =d+2=17m满足邻接条件。(三)行星齿轮传动的几何尺寸和啮合参数计算按齿根弯曲强度初算齿轮模数m齿轮模数m的初算公式为 m=式中 算数系数,对于直齿轮传
12、动=12.1; 啮合齿轮副中小齿轮的名义转矩,N*m ; =/=9549/n=95490.15/31600=0.2984N*m 使用系数,由参考文献二表67查得=1; 综合系数,由参考文献二表65查得=2; 计算弯曲强度的行星轮间载荷分布不均匀系数,由参考文献二公式65得=1.85; 小齿轮齿形系数,图622可得=3.15;, 齿轮副中小齿轮齿数,=15; 试验齿轮弯曲疲劳极限,按由参考文献二图626630选取=120所以 m=12.1 =0.658 取m=0.91)分度圆直径d=m*=0.915=13.5mm =m*=0.924=21.6mm =m*=0.963=56.7mm2) 齿顶圆直径
13、 齿顶高:外啮合=*m=m=0.9内啮合=(-)*m=(1-7.55/)*m=0.792 =+2=13.5+1.8=15.3mm=+2=21.6+1.8=23.4mm=-2=56.7-1.584=55.116mm 3) 齿根圆直径 齿根高=(+)*m=1.25m=1.125 =-2=13.5-2.25=11.25mm=-2=21.6-2.25=19.35mm=+2=56.7+2.25=58.95mm 4)齿宽b参考三表819选取=1=*=113.5=13.5mm=*+5=13.5+5=18.5mm=13.5+(5-10)=13.5-5=8.5mm5) 中心距a 对于不变位或高变位的啮合传动,因
14、其节圆与分度圆相重合,则啮合齿轮副的中心距为: 1、ag为外啮合齿轮副=m/2(+)=0.9/2(15+24)=17.55mm 2、bg为内啮合齿轮副 =m/2(+)=0.9/2(63-24)=17.55mm中心轮a行星轮g内齿圈b模数m0.90.90.9齿数z152463分度圆直径d13.521.656.7齿顶圆直径15.323.454.9齿根圆直径11.2519.3558.95齿宽高b18.518.58.5中心距a=17.55mm =17.55mm (四)行星齿轮传动强度计算及校核1、行星齿轮弯曲强度计算及校核(1)选择齿轮材料及精度等级中心轮a选选用45钢正火,硬度为162217HBS,
15、选8级精度,要求齿面粗糙度1.6行星轮g、内齿圈b选用聚甲醛(一般机械结构零件,硬度大,强度、钢性、韧性等性能突出,吸水性小,尺寸稳定,可用作齿轮、凸轮、轴承材料)选8级精度,要求齿面粗糙度3.2。(2)转矩 =/=9549/n=95490.15/31600=0.2984N*m=298.4N*mm;(3)按齿根弯曲疲劳强度校核由参考文献三式824得出 如【】则校核合格。(4)齿形系数由参考文献三表812得=3.15,=2.7,=2.29;(5)应力修正系数由参考文献三表813得=1.49,=1.58,=1.74;(6)许用弯曲应力由参考文献三图824得=180MPa,=160 MPa ; 由表
16、89得=1.3 由图825得=1;由参考文献三式814可得 =*/=180/1.3=138 MPa =*/=160/1.3=123.077 MPa=2K/b*=(21.1298.4/13.515)3.151.49=18.78 Mpa =138 MPa=*/=18.782.71.587/3.151.74=14.62查参考文献二表611可得 =1.3所以 1.33、有关系数和接触疲劳极限(1)使用系数查参考文献二表67 选取=1(2)动载荷系数查参考文献二图66可得=1.02(3)齿向载荷分布系数对于接触情况良好的齿轮副可取=1(4)齿间载荷分配系数、由参考文献二表69查得 =1.1 =1.2(5
17、)行星轮间载荷分配不均匀系数由参考文献二式713 得=1+0.5(-1)由参考文献二图719 得=1.5 所以 =1+0.5(-1)=1+0.5(1.5-1)=1.25仿上 =1.75(6)节点区域系数由参考文献二图69查得=2.06(7)弹性系数由参考文献二表610查得=1.605(8)重合度系数由参考文献二图610查得=0.82(9)螺旋角系数 =1(10)试验齿的接触疲劳极限由参考文献二图611图615查得 =520Mpa(11)最小安全系数、由参考文献二表6-11可得=1.5、=2(12)接触强度计算的寿命系数由参考文献二图611查得 =1.38(13)润滑油膜影响系数、由参考文献二图
18、617、图618、图619查得=0.9、=0.952、=0.82(14)齿面工作硬化系数由参考文献二图620查得 =1.2(15)接触强度计算的尺寸系数由参考文献二图621查得 =1所以 =2.061.6050.821=2.95 =2.95=3.5 =2.95=4.32 =*=520/1.31.380.90.950.821.21=464.4所以 齿面接触校核合格(五)行星齿轮传动的受力分析在行星齿轮传动中由于其行星轮的数目通常大于1,即1,且均匀对称地分布于中心轮之间;所以在2HK型行星传动中,各基本构件(中心轮a、b和转臂H)对传动主轴上的轴承所作用的总径向力等于零。因此,为了简便起见,本设
19、计在行星齿轮传动的受力分析图中均未绘出各构件的径向力,且用一条垂直线表示一个构件,同时用符号F代表切向力。为了分析各构件所受力的切向力F,提出如下三点:(1) 在转矩的作用下,行星齿轮传动中各构件均处于平衡状态,因此,构件间的作用力应等于反作用力。(2) 如果在某一构件上作用有三个平行力,则中间的力与两边的力的方向应相反。(3) 为了求得构件上两个平行力的比值,则应研究它们对第三个力的作用点的力矩。在2HK型行星齿轮传动中,其受力分析图是由运动的输入件开始,然后依次确定各构件上所受的作用力和转矩。对于直齿圆柱齿轮的啮合齿轮副只需绘出切向力F,如图13所示。由于在输入件中心轮a上受有个行星轮g同
20、时施加的作用力和输入转矩的作用。当行星轮数目2时,各个行星轮上的载荷均匀,(或采用载荷分配不均匀系数进行补偿)因此,只需要分析和计算其中的一套即可。在此首先确定输入件中心轮a在每一套中(即在每个功率分流上)所承受的输入转矩为 =/=9549/n=95490.15/31600=0.2984N*m可得 =*=0.8952 N*m式中 中心轮所传递的转矩,N*m; 输入件所传递的名义功率,kw; (a) (b) 图5-2传动简图(a)传动简图 (b)构件的受力分析按照上述提示进行受力分析计算,则可得行星轮g作用于中心轮a的切向力为 =2000/=2000/=20000.2984/13.5=44.2N
21、而行星轮g上所受的三个切向力为中心轮a作用与行星轮g的切向力为 =-=-2000/=-44.2N 内齿轮作用于行星轮g的切向力为=-2000/=-44.2N 转臂H作用于行星轮g的切向力为=-2=-4000/=-88.4N 转臂H上所的作用力为=-2=-4000/=-88.4N 转臂H上所的力矩为 =-4000/*=-40000.8952/13.517.55=-4655.0 N*m 在内齿轮b上所受的切向力为 =-=2000/=44.2N 在内齿轮b上所受的力矩为=/2000=/=0.895221.6/13.5=1.43 N*m 式中 中心轮a的节圆直径, 内齿轮b的节圆直径, 转臂H的回转半
22、径,根据参考文献二式(637)得 -/=1/=1/1-=1/1+P转臂H的转矩为 =-*(1+P)= -0.8952(1+4.2)=-4.655 N*m 仿上 -/=1/=1/1-=p/1+P内齿轮b所传递的转矩, =-p/1+p*=-4.2/5.2(-4.655)=3.76 N*m(六)行星齿轮传动的均载机构及浮动量行星齿轮传动具有结构紧凑、质量小、体积小、承载能力大等优点。这些是由于在其结构上采用了多个(2)行星轮的传动方式,充分利用了同心轴齿轮之间的空间,使用了多个行星轮来分担载荷,形成功率分流,并合理地采用了内啮合传动;从而,才使其具备了上述的许多优点。(七)轮间载荷分布均匀的措施为了
23、使行星轮间载荷分布均匀,起初,人们只努力提高齿轮的加工精度,从而使得行星轮传动的制造和转配变得比较困难。后来通过实践采取了对行星齿轮传动的基本构件径向不加限制的专门措施和其他可进行自动调位的方法,即采用各种机械式的均载机构,以达到各行星轮间载荷分布均匀的目的。从而,有效地降低了行星齿轮传动的制造精度和较容易转配,且使行星齿轮传动输入功率能通过所有的行星轮进行传递,即可进行功率分流。在选用行星齿轮传动均载机构时,根据该机构的功用和工作情况,应对其提出如下几点要求:()载机构在结构上应组成静定系统,能较好地补偿制造和转配误差及零件的变形,且使载荷分布不均匀系数值最小。()均载机构的补偿动作要可靠、
24、均载效果要好。为此,应使均载构件上所受力的较大,因为,作用力大才能使其动作灵敏、准确。()在均载过程中,均载构件应能以较小的自动调整位移量补偿行星齿轮传动存在的制造误差。()均载机构应制造容易,结构简单、紧凑、布置方便,不得影响到行星齿轮传动性能。均载机构本身的摩擦损失应尽量小,效率要高。()均载机构应具有一定的缓冲和减振性能;至少不应增加行星齿轮传动的振动和噪声。为了使行星轮间载荷分布均匀,有多种多样的均载方法。对于主要靠机械的方法来实现均载的系统,其结构类型可分为两种:1、静定系统该系统的均载原理是通过系统中附加的自由度来实现均载的。2、静不定系统均载机构:1、基本构件浮动的均载机构(1)
25、 中心轮a浮动 (2)内齿轮b浮动 (3)转臂H浮动 (4)中心轮a与转臂H同时浮动 (5)中心轮a与内齿轮b同时浮动 (6)组成静定结构的浮动2、杠杆联动均载机构本次所设计行星齿轮是静定系统,基本构件中心轮a浮动的均载机构。 第六章 行星轮架与输出轴间齿轮传动的设计已知:传递功率P=150w,齿轮轴转速n=1600r/min,传动比i=5.2,载荷平稳。使用寿命10年,单班制工作。 (一)轮材料及精度等级行星轮架内齿圈选用45钢调质,硬度为220250HBS,齿轮轴选用45钢正火,硬度为170210HBS,选用8级精度,要求齿面粗糙度3.26.3。(二)按齿面接触疲劳强度设计因两齿轮均为钢质
26、齿轮,可应用参考文献四式1022求出值。确定有关参数与系数。1) 转矩 = =/=9549/n=95490.15/31600=0.2984N*m2) 荷系数K查参考文献四表1011 取K=1.13)齿数和齿宽系数行星轮架内齿圈齿数取11,则齿轮轴外齿面齿数=11。因单级齿轮传动为对称布置,而齿轮齿面又为软齿面,由参考文献四表1020选取=1。4)许用接触应力 由参考文献四图1024查得 =560Mpa, =530 Mpa由参考文献四表1010查得 =1 =60nj=6016001(105240)=1.997 =/i=1.997由参考文献四图1027可得=1.05。由参考文献四式1013可得=/
27、=1.05560/1=588 Mpa=/=1.05530/1=556.5 Mpa(三)按齿根弯曲疲劳强度计算由参考文献四式1024得出,如则校核合格。确定有关系数与参数:1)齿形系数由参考文献四表1013查得 =3.63 2)应力修正系数由参考文献四表1014查得 =1.413)许用弯曲应力由参考文献四图1025查得 =210Mpa, =190 Mpa由参考文献四表1010查得 =1.3由参考文献四图1026查得 =1由参考文献四式1014可得 =/=210/1.3=162 Mpa =/=190/1.3=146 Mpa故 m1.26=1.26=0.58=2K/b=3.631.41=27.77M
28、Pa=162 Mpa=/=27.77MPa=146 Mpa齿根弯曲强度校核合格。由参考文献四表103取标准模数m=1(四)主要尺寸计算=mz=111mm=11mm =111mm=11mm a=1/2m(+)=1/21(11+11)mm=11mm(五)验算齿轮的圆周速度v v=/601000=111600/601000=0.921m/s由参考文献四表1022,可知选用8级精度是合适的。第七章 行星轮系减速器齿轮输入输出轴的设计(一)减速器输入轴的设计1、选择轴的材料,确定许用应力由已知条件 选用45号钢,并经调质处理,由参考文献四表144查得强度极限=650MPa,再由表142得许用弯曲应力=6
29、0MPa2、按扭转强度估算轴径根据参考文献四表141 得C=118107。又由式142得 d=(118107)=5.364.86取直径=8.5mm3、确定各轴段的直径轴段1(外端)直径最少=8.5mm,考虑到轴在整个减速离合器中的安装所必须满足的条件,初定:=9.7mm, =10mm,=11mm, =11.5mm, =12mm, =15.42mm, =18mm。4、确定各轴段的长度齿轮轮廓宽度为20.5mm,为保证达到轴于行星齿轮安装的技术要求及轴在整个减速离合器中所必须满足的安装条件,初定:L=107mm, =3.3mm, =2mm, =44.2mm, =4mm, =18.5mm, =1.5
30、mm, =16.3mm。按设计结果画出轴的结构草图: 图7-1 输入轴简图5、 校核轴a、受力分析图 图7-2 受力分析(a) 水平面弯矩图 (b)垂直面内的弯矩图 (c)合成弯矩图 (d)转矩图圆周力:=2298.4/13.5=44.2N 径向力:=44.2tan=16.1N法向力:=/cos=44.2/ cos=47.04Nb、作水平面内弯矩图(7-2a)。支点反力为: =/2=22.1N 弯矩为:=22.177.95/2=861.35Nmm =22.129.05/2=321 Nmmc、作垂直面内的弯矩图(7-2b),支点反力为:=/2=8.04N弯矩为:=8.0477.95/2=313.
31、5Nmm =8.0429.05/2=116.78 Nmmd、作合成弯矩图(7-2c):=994.45 Nmm=370.6 Nmme、作转矩图(7-2d):T=9549/n=95490.15/1600=0.8952N*m=895.2 Nmmf、求当量弯矩 =1130.23 Nmm=652.566 Nmmg、校核强度 =/W=1130.23/0.1=1130.23/0.1=6.54Mpa=/W=652.566/0.1=652.566/0.1=4.9 Mpa所以 满足=60Mpa的条件,故设计的轴有足够的强度,并有一定裕量。(二)行星轮系减速器齿轮输出轴的设计1、选择轴的材料,确定许用应力由已知条件
32、: 齿轮轴选用45钢正火,由参考文献四表144查得强度极限=600MPa,再由表142得许用弯曲应力=55MPa2、按扭转强度估算轴径=P=0.1597.98%=0.147kw根据参考文献四表141 得C=118107。又由式142得 d=(118107)=5.344.83取直径=8.9mm3、确定各轴段的直径轴段1(外端)直径最少=8.9m考虑到轴在整个减速离合器中的安装所必须满足的条件,初定:=12mm,=11.3mm, = =12mm。4、确定各轴段的长度齿轮轮廓宽度为20.5mm,为保证达到轴于行星齿轮安装的技术要求及轴在整个减速离合器中所必须满足的安装条件,初定:L=136.5mm,
33、 =19.2mm, =1.1mm, =74.5mm, =1.5mm, =15.8mm, =1.2mm, =23.2mm。按设计结果画出轴的结构草图:见图7-3 图7-3 输出轴5、校核轴:a、受力分析图 见图 图7-4 受力分析图(a)水平面内弯矩图 (b)垂直面内的弯矩图 (c)合成弯矩图 (d)转矩图圆周力:=2465.5/11=84.64N径向力:=846.4tan=308.1N法向力:=/cos=846.4/ cos=90.72Nb、作水平面内弯矩图(7-4a)。支点反力为: =/2=42.32N 弯矩为:=42.3268.25/2=1444.17Nmm =423.233.05/2=6
34、99.338Nmmc、作垂直面内的弯矩图(7-4b),支点反力为:=/2=15.405N弯矩为:=154.0568.25/2=525.7 Nmm =154.0533.05/2=254.57 Nmmd、作合成弯矩图(7-4c):=1536.87 Nmm=744.23 Nmme、作转矩图(7-4d):T= -=*(1+P)= 0.8952(1+4.2)=465.5 N*mmf、求当量弯矩 =1562.04 Nmm=794.9Nmmg、校核强度 =/W=1562.04/0.1=1562.04/0.1=9.1Mpa=/W=794.9/0.1=794.9/0.1= 4.6Mpa所以 满足=55Mpa的条
35、件,故设计的轴有足够的强度,并有一定裕量。第八章 结论本文是关于自动洗衣机减速离合器内部减速装置,这种减速器对于体积和重量方面要求较高,在设计过程中不仅要注意这些,同时也要在精度上下些力气,因为精度不高,在洗衣机运行中产生的震动和噪音就越大,随着人们对家电的要求逐渐提高和科技的日益发展,洗衣机是家用电器中常见的一种,人们对它的要求不仅是质量上的,对它本身的重量、体积、噪音等方面的要求也越来越高,本文设计的减速器就注重在这些方面下手,尽量减轻他的重量和缩小他的体积,同时也不忘提高齿轮间的传动精度和传动的精度,能使洗衣机在运行中做到噪音小,震动小的作用。同时由于本人能力和经验有限,在设计过程中难免会犯很多错误,也可能有许多不切实际的地方,还望读者在借鉴的同时,能指出当中的不足,把减速器做的更完美。 第九章 参考文献(1)机械传动设计手册 主编:江耕华 胡来容 陈启松 煤炭工业出版社出版(2)行星齿轮传动设计 主编:饶振纲 化学工业出版社出版(3)机械基础 主编:王治平(4)机械设计基础 主编:陈立德 高等教育出版社出版(5)机械零件设计手册 主编:葛志祺 冶金工业出版社出版(6)互换性与
限制150内