核技术及其应用的发展(共5页).doc
《核技术及其应用的发展(共5页).doc》由会员分享,可在线阅读,更多相关《核技术及其应用的发展(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上核技术及其应用的发展人防五队 风水专业 乔亚鑫 1896年贝克勒尔发现铀的天然放射性,从此诞生了一门新的科学:原子核科学技术。 1919年卢瑟福利用天然 射线轰击各种原子,确立了原子的核结构,随后又首次用人工方法实现了核反应。但是用天然射线源能够研究的核反应很有限,人们开始寻找一种可以产生具有不同能量的各种粒子束的装置,于是粒子加速器应运而生。同时,为了探测各种射线和核反应的产物,还需要有辨别粒子种类和能量的探测器及相应的电子学设备。在研究核物理的过程中人们发现,放射性一方面可能造成人体的伤害,另一方面它也可以在医学、工农业和其它方面有许多应用。于是相应地,辐射防护技
2、术与射线应用技术也发展起来。此外,核物理的研究还导致了许多放射性核素的发现。它们的半衰期长至数千万年,短至不足 1秒。在不同场合下选择适当的放射性核素,可以做示踪剂、测年工具或药物使用。这就是放射性核素技术(或称为同位素技术)。上述粒子加速器技术、核探测技术与核电子学、射线和粒子束技术、放射性核素技术等,通常统称为核技术 。概括而言,核技术就是利用放射性现象、物质(包括荷能粒子)和规律探索自然、造福人类的一门学科,其主要内容是研究射线、荷能粒子束和放射性核素的产生、与物质相互作用、探测和各种应用的技术。在我国现行的研究生培养体系中“核技术及应用”属于一级学科“核科学与技术”之下的一个二级学科。
3、核技术还包括核武器技术与核动力技术(或称为核能技术)。核动力技术的核心是反应堆技术,反应堆可用来发电、供热、驱动运载工具等。反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析、生产放射性核素等。“核能工程与技术”和“辐射防护与环境保护”也是“核科学与技术”之下的二级学科。 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托、互相渗透的。同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的。其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化。相应的研究构成了辐射
4、物理学、辐射化学和辐射生物学的主要内容。在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴。因此,核技术及应用这一学科与核物理学、辐射物理学、辐射化学、放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内。近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理、核医学等学科。另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理、机械、真空技术、电子学、射频技术、计算机技术、控制技术、成像技术等多种学科和技术的综合。故此核技术充分体现了多种学科的交*这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一。第二次
5、世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工、无损检测、核医学诊断设备与放射治疗设备、同位素和放射性药物生产等。据统计,美国和日本的国民经济总产值( GDP)中核技术的贡献约占 3%4%。美国核技术产生的年产值约为 3500亿美元,其中非核能部分约占 80%。 现代很多科学技术成就的取得都是与核技术的贡献分不开的。仅以诺贝尔奖为例, 1931年美国科学家劳伦斯发明回旋加速器,为此获得了 1939年诺贝尔物理奖。 1932年英国科学家 Cockcroft和 Walton制造了第一台高压倍压加速器并用其完成了首次人工核反应,获 1957年诺贝尔物理奖。此外还有
6、八项诺贝尔物理奖和化学奖是利用加速器进行实验而获得的。在探测器方面,威尔逊因发明云室探测器而获 1927年诺贝尔物理奖,其后布莱克特因改进威尔逊云室实现自动曝光而获 1948年诺贝尔物理奖,鲍威尔发明照相乳胶法并用其发现介子而获 1950年诺贝尔物理奖,这之后格拉泽因发明气泡室使粒子探测效率提高 1000倍而获 1960年诺贝尔物理奖,阿尔瓦雷兹因改进气泡室并用其发现共振态粒子而获 1968年诺贝尔物理奖,沙帕克因发明多丝正比室和漂移室而获 1992年诺贝尔物理奖。在核分析技术方面, 1948年美国科学家利比建立了 14C测年方法并为此获得了 1960年诺贝尔化学奖,穆斯堡尔因发现穆斯堡尔效应
7、而获 1961年诺贝尔物理奖,布罗克豪斯和沙尔因发展了中子散射技术而获 1994年诺贝尔物理奖。核技术对于科学发展的重要推动作用由此可见一斑。由于核技术为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段,自 20世纪 80年代以来各国竞相建造与核技术密切相关的大型科学工程。 1 核技术的物理基础与支撑技术 1.1 射线和粒子束与物质的相互作用 射线和粒子束通过物质时与物质发生相互作用,一方面射线和粒子在介质中被散射或吸收阻止、其能量逐步损失,另一方面物质在射线和粒子束的作用下产生电离、激发、溅射、次级射线或次级粒子发射等物理效应。射线和粒子束与物质相互作用的研究已经蓬勃发展了近百年,目前
8、所研究射线和粒子束的范围已由开始时较为单一的自发辐射产生的射线、射线(快速电子流)及 粒子,扩充到各种能量、各种核素的离子束、中子束、以至团簇离子束。这些研究一方面提供了核结构信息,另一方面也为研制核探测器、防护辐射危害、以及开展各种核技术应用工作打下了基础。 1.2 粒子加速器技术自 20世纪 30年代初开始,倍压加速器、静电加速器、射频超导直线加速器、回旋加速器等陆续发展起来。第二次世界大战以后,自动稳相原理的提出和射频技术的发展对加速器技术的发展给予了极大的推动。美国斯坦福直线加速器中心( SLAC)建造了能量为 50 GeV的电子直线加速器,长度达 3 km。同步加速器也迅速发展起来,
9、并成为高能加速器的主流类型。对撞机原理的提出,极大地拓展了高能物理的实验能区。70年代以来,美、欧、日本相继建造了一批大型对撞机。欧洲核子中心( CERN)80年代末建造的正负电子对撞机 LEP横跨法国和瑞士两国,轨道周长达 26.7 km,运行耗电占当时全欧洲发电量的 7%。随着重离子物理研究和放射性核束物理研究的兴起,大型串列静电加速器、等时性回旋加速器、重离子直线加速器也相继发展起来。近年来,为满足加速器驱动洁净核能系统和散裂中子源的需要,强流中能(1GeV)质子直线加速器的研究已成为研究的热点。 另一方面,加速器技术在多学科研究、国民经济、医学、国防等方面也得到了日益广泛的应用。此类加
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核技术 及其 应用 发展
限制150内