正切函数的性质与图像教案(共3页).doc
《正切函数的性质与图像教案(共3页).doc》由会员分享,可在线阅读,更多相关《正切函数的性质与图像教案(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 143 正切函数的性质和图像一、教学目标1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;二、课时 1课时三、教学重点 正切函数的性质与图象的简单应用.四、教学难点 正切函数性质的深刻理解及其简单应用.五、教具多媒体、实物投影仪六、教学过程导入新课 思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课. 思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也
2、是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?
3、 活动:问题,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性 由诱导公式tan(x+)=tanx,xR,x+k,kZ 可知,正切函数是周期函数,周期是.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性 由诱导公式 tan(-x)=-tanx,xR,x+k,kZ 可知,正切函数
4、是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(,0)kZ.(3)单调性 通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(,)内是增函数,又由正切函数的周期性可知,正切函数在开区间(+k,+k),kZ内都是增函数.(4)定义域 根据正切函数的定义tan=,显然,当角的终边落在y轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为k+,kZ,所以正切函数的定义域是|k+,kZ,而不是+2k,kZ,这个问题不少初学者很不理解,在解题时又很容易出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正切 函数 性质 图像 教案
限制150内