2019年潍坊市高一数学上期末试卷(及答案)(共17页).doc
《2019年潍坊市高一数学上期末试卷(及答案)(共17页).doc》由会员分享,可在线阅读,更多相关《2019年潍坊市高一数学上期末试卷(及答案)(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2019年潍坊市高一数学上期末试卷(及答案)一、选择题1已知是偶函数,它在上是增函数.若,则的取值范围是( )ABCD2设集合,则( )ABCD3若函数的定义域为 ,则实数 取值范围是( )ABCD4函数ya|x|(a1)的图像是()ABCD5若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,26已知函数,若,则,的大小关系是( )ABCD7把函数的图象向右平移一个单位,所得图象与函数的图象关于直线对称;已知偶函数满足,当时,;若函数有五个零点,则正数的取值范围是( )ABCD8已知函数,若对任意,都有
2、成立,则实数的取值范围是( )ABCD9函数的定义域是( )A(-1,2B-1,2C(-1 ,2)D-1,2)10若,则( )ABCD11函数f(x)是定义在R上的偶函数,在(,0上是减函数且f(2)=0,则使f(x)0的解集为R,从而可看出m0时,满足题意,m0时,可得出,解出m的范围即可【详解】函数f(x)的定义域为R;不等式mx2mx+20的解集为R;m0时,20恒成立,满足题意;m0时,则;解得0mc,又因为,再由对数函数的单调性得到ab,ca,且ab;cab故选D【点睛】考查对数的运算性质,对数函数的单调性比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单
3、调性得到结果.7C解析:C【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.详解:曲线右移一个单位,得,所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.当x0,1时,y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.绘制函数图像如图所示,由图像知kf(3)1,即:,求解不等式组可得:.即的取值范围是本题选择C选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化
4、能力和计算求解能力.8D解析:D【解析】试题分析:求函数f(x)定义域,及f(x)便得到f(x)为奇函数,并能够通过求f(x)判断f(x)在R上单调递增,从而得到sinm1,也就是对任意的都有sinm1成立,根据0sin1,即可得出m的取值范围详解:f(x)的定义域为R,f(x)=f(x);f(x)=ex+ex0;f(x)在R上单调递增;由f(sin)+f(1m)0得,f(sin)f(m1);sinm1;即对任意都有m1sin成立;0sin1;m10;实数m的取值范围是(,1故选:D点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题
5、或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.9A解析:A【解析】【分析】根据二次根式的性质求出函数的定义域即可【详解】由题意得: 解得:1x2,故函数的定义域是(1,2,故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.10A解析:A【解析】因为,所以,由于,所以,应选答案A 11D解析:D【解析】【分析】根据偶函数的
6、性质,求出函数在(,0上的解集,再根据对称性即可得出答案.【详解】由函数为偶函数,所以,又因为函数在(,0是减函数,所以函数在(,0上的解集为,由偶函数的性质图像关于轴对称,可得在(0,+ )上的解集为(0,2),综上可得,的解集为(-2,2).故选:D.【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12D解析:D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性二、填空题13【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有解析:【解析】作出函数的图象,如图
7、所示, 当时,单调递减,且,当时,单调递增,且,所以函数的图象与直线有两个交点时,有14【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】函数在上单调递增函数在区间上为增函数解得实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根解析:【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】函数在上单调递增,函数在区间上为增函数,解得,实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 潍坊市 数学 期末试卷 答案 17
限制150内