《高考线性回归方程总结(共8页).docx》由会员分享,可在线阅读,更多相关《高考线性回归方程总结(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二讲 线性回归方程一、 相关关系:1、2、 相关系数:,其中:(1) ;(2)例题1:下列两个变量具有相关关系的是( )A. 正方形的体积与棱长; B.匀速行驶的车辆的行驶距离与行驶时间;C.人的身高和体重; D.人的身高与视力。例题2:在一组样本数据的散点图中,若所有样本点都在直线上,则样本相关系数为( )例题3:是相关系数,则下列命题正确的是: (1) 时,两个变量负相关很强;(2)时,两个变量正相关很强;(3) 时,两个变量相关性一般;(4) (4)时,两个变量相关性很弱。3、 散点图:初步判断两个变量的相关关系。例题4:在画两个变量的散点图时,下列叙述正确的
2、是( )A. 预报变量在轴上,解释变量在轴上;B. 解释变量在轴上,预报变量在轴上;C. 可以选择两个变量中的任意一个变量在轴上;D. 可以选择两个变量中的任意一个变量在轴上;例题5:散点图在回归分析过程中的作用是( )A. 查找个体个数 B.比较个体数据的大小 C.研究个体分类 D.粗略判断变量是否线性相关二、 线性回归方程:1、回归方程:其中,(代入样本点的中心)例题1:设是变量个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是( )A. 直线过点 B.当为偶数时,分布在两侧的样本点的个数一定相同C.相关系数在0到1之间 D.相关系数为直线的
3、斜率例题2:工人月工资(元)依劳动生产率(千元)变化的回归直线方程为,下列判断正确的是( )A. 劳动生产率为1000元时,工资为150元;B.劳动生产率提高1000元时,工资平均提高150元;C.劳动生产率提高1000元时,工资平均提高90元;D.劳动生产率为1000元时,工资为90元;例题3:设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则不正确的是( )A. 与具有正的线性相关关系; B.回归直线过样本点的中心C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg例题4:
4、为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高174176176176178儿子身高175175176177177则对的线性回归方程为( )A. B. C. D.2、 残差:(1) 残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。(2) 残差图呈带状分布在横轴附近,越窄模型拟合精度越高。(3)残差平方和越小,模型拟合精度越高。3、 相关指数:(1) 其中:为残差平方和;为总偏差平方和。(2) ,越大模型拟合精度越高。例题5:下列说法正确的是( )(1) 残差平方和越小,相关指数越小,模型拟合效果越差;(2) 残差平方和越大,相关指数越大,模型拟合效果越
5、好;(3) 残差平方和越小,相关指数越大,模型拟合效果越好;(4) 残差平方和越大,相关指数越小,模型拟合效果越差;A. (1)(2) B.(3)(4) C.(1)(4) D.(2)(3)例题6:关于回归分析,下列说法错误的是( )A. 在回归分析中,变量间的关系若是非确定关系,则因变量不能由自变量唯一确定;B. 线性相关系数可以是正的,也可以是负的C. 样本点的残差可以是正的,也可以是负的D. 相关指数可以是正的,也可以是负的例题7:下列命题正确的是( )(1) 线性相关系数越大,两个变量的线性相关性越强,反之,线性相关性越弱;(2) 残差平方和越小的模型,拟合的效果越好;(3) 用相关指数
6、来刻画回归效果,越小,说明模型的拟合效果越好;(4) 随机误差是衡量预报精确度的一个量,但它是一个不可观测的量;(5) 表示相应于点的残差,且。A. (1)(3)(5) B.(2)(4)(5) C.(1)(2)(4) D.(2)(3)例题8:已知与之间的几组数据如下表:123456021334假设根据上表数据所得的线性回归直线方程为。若某同学根据上表中的前两个数据求得的直线方程为,则下列结论正确的是( )A. B. C. D.例题9:关于某设备的使用年限(年)和所支出的维修费用(万元)有下表所示的资料:使用年限23456维修费用2.23.85.56.57.0若由资料知,对呈线性相关关系,求:(
7、1) 线性回归方程中的回归系数;(2) 残差平方和与相关指数,作出残差图,并对该回归模型的拟合精度作出适当判断;(3) 使用年限为10年时,维修费用大约是多少?三、 非线性回归模型:例题1:如果样本点分布在某一条指数函数曲线的周围,其中和是参数,通过两边取自然对数的方法,把指数关系式变成对数关系式后,下列哪个变换结果是正确的( )A. B. C. D.例题2:下列回归方程中, 是线性回归方程; 是非线性回归方程。(1) (2) (3)(4) (5)例题3:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年
8、宣传费和年销售量(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值。46.65636.8289.81.61469108.8表中w1 =1, , =1()根据散点图判断,与哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据()的结果回答下列问题:(i) 年宣传费x=49时,年销售量及年利润的预报值是多少?(ii) 年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2). (un vn),其回归
9、线v=u的斜率和截距的最小二乘估计分别为:四、独立性检验:例题1:下表是一个列联表:217322527总计46100则表中的值分别为 。例题2:可以粗略的判断两个分类变量是否有关系的是( )A. 散点图 B.残差图 C.等高条形图 D.以上都不对例题3:在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A. B. C. D.例题4:在判断两个分类变量是否有关系的常用方法中,最为精确的方法是( )A. 考察随机误差 B.考察线性相关系数 C.考察相关指数 D.考察独立性检验中的例题5:在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()。若的观测值满足,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有 99人患有肺病;从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99&的可能患有肺病;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误。A. B. C. D. 例题6:在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):数学成绩与物理成绩之间有()把握有关。A. B. C. D. 专心-专注-专业
限制150内