第十六章二次根式知识点归纳(共11页).doc
《第十六章二次根式知识点归纳(共11页).doc》由会员分享,可在线阅读,更多相关《第十六章二次根式知识点归纳(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次根式知识点归纳 家长签字: 学生:陈爱枝 时间:2017、9、24 指导老师:王老师一、形如()的式子叫做二次根式。注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,二次根式成立应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0三、二次根式()的双重非负性:1、被开方数非负。2、的值非负。四、二次根式的化简。1、化简 时,一定要弄明白被开方数的底数a是正数还是负数或0. =a若a是正数,则a等于a本身;若a是负数,则a等于a的相反数-a, 若a是0,则a等于0.2、=a
2、 (a0).3、被开方数是乘积用=(a0,b0)化,4、被开方数是商的形式用=(a0,b0)或=5、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中的因数或因式不能再开方。(五)二次根式的加法和减法1 同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 2 合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。 3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。 (六)二次根式的混合运算1确定运算顺序 2灵活运用运算定律 3正确使用乘法公
3、式 4大多数分母有理化要及时 5在有些简便运算中也许可以约分,不要盲目有理化 (七)分母有理化分母有理化:利用分式的基本性质,分子与分母同时乘以分母根号本身。构成化去分母中的根号。分母有理化有两种方法 I.分母是单项式 II.分母是多项式 要利用平方差公式 注意:1.根式中不能含有分母 2.分母中不能含有根式。第十七章勾股定理知识总结1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2=c2。或者:直角三角形的两条直角的平方和等于斜边的平方勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在中,则,)(
4、2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边2.勾股定理逆定理:如果三角形三边长a,b,c满足a2b2=c2。,那么这个三角形是直角三角形。 a. 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法b.若,时,以,为三边的三角形是钝角三角形; 若,时,以,为三边的三角形是锐角三角形;c.定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。勾股数
5、能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;8,15,17;等用含字母的代数式表示组勾股数:(为正整数);(,为正整数)3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 4.直角三角形的性质 (1)、直角三角形的两个锐角互余。可表示如下:C=90A+B=90 (2)、在直角三角形中,30角所对的直角边等于斜边的一半。(3)、直角三角形斜边上的中线等于斜边的一半(4)直角三角形三边满足5、直角三角
6、形的判定 1、有一个角是直角的三角形是直角三角形。2、有两个角互余的三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。6、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十六 二次 根式 知识点 归纳 11
限制150内