35kV变电站一次部分设计(中)(共16页).doc
《35kV变电站一次部分设计(中)(共16页).doc》由会员分享,可在线阅读,更多相关《35kV变电站一次部分设计(中)(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第6章 无功补偿 6.1 无功补偿概述 电力系统中有许多根据电磁感应原理工作的电气设备,如变压器、电动机、感应炉等。都是依靠磁场来传送和转换电能的电感性负载,在电力系统中感应电动机约占全部负荷的50%以上。电力系统中的无功功率很大,必须有足够的无功电源,才能维持一定的电压水平,满足系统安全稳定运行的要求。 电力系统中的无功电源由三部分组成:1、发电机可能发出的无功功率(一般为有功功率的40%-50%);2、无功功率补偿装置(并联电容器和同步调相机)输出无功功率;3、110kV及以上电压线路的充电功率。电力系统中如无功功率小,将引起供电电网的电压降低。电压低于额定电压值
2、时,将使发电、送电、变电设备均不能达到正常的出力,电网的电能损失增大,并容易导致电网震荡而解列,造成大面积停电,产生严重的经济损失和政治影响。电压下降到额定电压值的60%70%时,用户的电动机将不能启动甚至造成烧毁。所以进行无功补偿是非常有必要的。6.2 无功补偿的计算 补偿前cos=0.75,求补偿后达到0.9。因此可以如下计算:设需要补偿XMva 的无功则 cos=0.9 (6-1) 解得 X=3.377MVar 6.3 无功补偿装置无功补偿装置分为串联补偿装置和并联补偿装置两大类。并联补偿装置又可分为同期调相机、并联电容补偿装置、静补装置等几大类。 同期调相机相当于空载运行的同步电动机在
3、过励磁时运行,它向系统提供可无级连续调节的容性和感性无功,维持电网电压,并可以强励补偿容性无功,提高电网的稳定性。在我国经常在枢纽变电所安装同步调相机,以便平滑调节电压和提高系统稳定性。静止补偿器有电力电容器与可调电抗并联组成。电容器可发出无功功率,电抗器可吸收无功功率,根据电压需要,向电网提供快速无级连续调节的容性和感性的无功,降低电压波动和波形畸变率,全面提高电压质量,并兼有减少有功损耗,提高系统稳定性,降低工频过电压的功能。其运行维护简单,功耗小,能做到分相补偿,对冲击负荷也有较强的适应性,因此在电力系统中得到越来越广泛的应用。但设备造价太高,本设计中不宜采用。电力电容器可按三角形和星形
4、接法连接在变电所母线上。既可集中安装,又可分散装设来接地供应无功功率,运行时功率损耗亦较小。综合比较以上三种无功补偿装置后,选择并联电容器作为无功补偿装置,并且采用集中补偿的方式。6.4 并联电容器装置的分组6.4.1分组原则(1)对于单独补偿的某台设备,例如电动机、小容量变压器等用的并联电容器装置,不必分组,可直接与该设备相连接,并与该设备同时投切。(2)配电所装设的并联电容器装置的主要目的是为了改善电网的功率因数。此时,为保证一定的功率因数,各组应能随负荷的变化实行自动投切。负荷变化不大时,可按主变压器台数分组,手动投切。(3)终端变电所的并联电容器装置,主要是为了提高电压和补偿主变压器的
5、无功损耗。此时,各组应能随电压波动实行自动投切。投切任一组电容器时引起的电压波动不应超过2.5%。 6.4.2分组方式并联电容器的分组方式主要有等容量分组、等差级数容量分组、带总断路器的等容量分组、带总断路器的等差级数容量分组。这几种方式中等容量分组方式,分组断路器不仅要满足频繁切合并联电容器的要求,而且还要满足开断短路的要求,这种分组方式应用较多,因此采用等容量分组方式。6.5 并联电容器装置的接线并联电容器装置的接线基本形式有星形和三角形两种。经常采用的还有由星形派生出的双星形,在某种场合下,也有采用由三角形派生出的双三角形。从电力工程电气设计手册(一次部分)502页表9-17可比较得出,
6、应采用Y形接线,因为这种接线适用于6kV及以上的并联电容器组,并且容易布置,布置清晰。并联电容器组装设在变电所低压侧,主要是补偿主变和负荷的无功功率,为了在发生单相接地故障时不产生零序电流,所以采用中性点不接地方式。选用BFM115003型号的高压并联电容器7台。额定电压11kV。额定容量500kVar。第7章 总平面布置设计及配电装置的选择7.1 总平面布置设计概述 电气总平面布置是一项综合性的工作, 在设计时应首先满足本专业的要求, 还需考虑系统、线路甚至是土建等各专业的多方面要求。但首先应从工艺的角度出发, 而且作为工艺专业应积极主动对各专业所遇到的矛盾及问题进行协调解决。变电电气专业是
7、变电站设计中的工艺专业, 而配电装置布置是实现电气生产工艺流程的核心内容。电气总平面应从配电装置人手, 全面了解各级电压各型配电装置的布置特点, 并将其作为解决好各专业之间问题及矛盾的重要手段。 配电装置均要采用较为紧凑的布置, 要充分考虑到站址周围环境的实际情况, 做到了因地制宜, 统筹安排, 合理紧凑, 节约用地和基建投资。 站址的选择需兼顾城市规划、环保、军事设施、国土资源、航空、文物等诸多因素, 开展工作的难度较大。设计方案在满足规程规范及功能性要求下,应优化变电站的布置,尽量减少占地面积,从而为电力建设的顺利开展打下基础。变电站的地址选择、设计以及建设工作都应当本着节约资源与保护土地
8、的基本原则进行。还应当尽量做到远近相结合,并且能够考虑远期规划的规模。变电站施工前期的布置设计应当有科学性、合理性,缓解地区供电负荷的压力外,为地方的经济发展贡献一份力量,努力为我国的社会主义经济建设添砖加瓦。7.2 总平面布置设计 电气总平面布置的要求:1、充分利用地形,方便运输、运行、监视和巡视等;2、出线布局合理、布置力求紧凑,尽量缩短设备之间的连线;3、符合外部条件,安全距离要符合要求。 7.2.1 变电站地址选择 变电站的选址工作是决定变电站建设能够顺利完成的基础。它除了要求自然地形略有起伏、地势较高并且地形相对平坦的区域、不受洪水的影响、并且雨水排散条件良好的地域、进出交通便利等自
9、然因素外,还应当兼顾城市规划、环境保护、军事设施、国土资源保护以及地方文物保护等社会因素。所以,变电站的选址应当经过长期的论证以及现场勘探,结合当地实际,才能够最终确定。 7.2.2 变电站的进出道路 为保证施工期间大件工程设施的运输方便和日后维修便利,变电站的选址交通条件应当较好。依据当地的地形和交通网,考虑到主变压器主要是由大货车运输,所以在考虑自然因素以及社会因素外,最适合建变电站的应当连接主要公路要道。可以方便变电站建设工作的顺利进行的同时,也能够改善当地的交通。 7.2.3 变电站总平面的布置设计 变电站的总平面布置设计应当符合站区的总体性规划和工艺要求。在满足了自然条件以及工程特点
10、外,还必须考虑变电站的安全设施、周边卫生环境、运行和检修等各方面的因素。龙兴35kV变电站设计:变电站的总平面设计可在站区A点方向作为北方向。在站区的南边,由南出线,布置35kV的配电装置。于站区北面,向东西两个方向出线,布置10kV的配电装置。站区中间再布置主变以及两边配置10kV的无功补偿装置(也可以将继电器小室布置在站区中间)。站区南面的中部设置为站前区,站区大门设置在向南方向。而在站区前可集中对主控制建筑以及污水处理装置等进行设置。 之所以把主控制建筑设置于站区南面的中间,除了主控制楼连接各处的配电装置地区的电缆可大大缩短,有利于对全站设备运行状况进行观测外,还使得站外的引水能够便利地
11、进入主控制建筑、处理好的污水可以方便排出站区。而且,主控制建筑与进站大门相近,有利于对出入站内的车辆进行管理。主控制建筑面向南方,通风与采光条件极佳,保障站内工作人员的生活质量。 变电站的站前区可进行通道式的广场布置,在其背面布置为变电站的主控制建筑,南面则可设计成主要运输道路。同时为了美化变电站的环境,对施工后的主变区域较杂乱的场所进行掩盖,通过人工处理、绿化等措施进行施工。在变电站的大门进口处,布置绿化带,重点处理。并且在站前区域的围墙内侧种一些灌木,起到衬托变电站的建筑群,起到美化环境的效果。同时,根据实际需求,在靠近各个配电装置区域和站内交通要到布置若干保护小室、主变无功的电源小室和站
12、用的配电室,以保证变电站的安全无患。 7.2.4 变电站的竖向布置设计 变电站区域的竖向布置设计,首先应当结合该区域的地形特征,对变电站工程的施工、所需设施的运输以及日后的检修等方面进行综合的考虑、研究后方可确定。应当最大化地避免场地的平整土方以及边坡等的工程量。所以,在对变电站的方案特征以及工艺的布置综合研讨后,应当把工作的重心放在竖向的布置形式设计、坡度测量以及坡向的定位、变电站的土方平衡点的设置上。变电站的站址选择一般为山前坡脚,此处地形通常会略有起伏,且地势会较为宽阔,所需占用农田面积较少。综合考虑了变电站区域的总平面布置、建筑群地基处理、区域地形特点等因素,同时也对以往变电站的工程实
13、践经验进行参考后,可规划变电站区域的竖向布置设计方案,并且对其进行土方计算。因为变电站的占地面积比较大,地形的高低差也较大,所以变电站的站址在方位上的变化会对土方计算工作造成极大的影响。对变电站竖向的布置设计应当从其线路的通畅、便捷等角度进行考虑,同时也要结合考虑变电站站址的地形特征,最终确定在变电站区域的长方向、与地形的等高线平行进行布置。由于竖向的地形高低相差较大,自然底面的坡度也相应的较高,所以变电站的竖向布置的排水系统通常会用道路的人工设施排水系统和自然地形的排水两者结合在一起的方案。 变电站的竖向坡度应当依据工艺设计要求进行设备的运行以及安装。结合实际的地形条件,主要确定35kV的配
14、电装置和10kV配电装置区域的坡度、坡向布置设计方案,同时进行相应的土方量的计算。35kV的配电装置设置为悬吊形的管形母线,它的设置方向定位变电站的B点方向。由于管形母线均平行,因此B点的方向坡度不宜过大。为了考虑到变电站区域内的地形同地面的连贯性,因此,35kV的配电装置坡度为0,在B点方向。由于35kV的连线均是软线,所以受设备运转和安装的影响偏小,所以其坡度可设置较大,一般定在1.5%2.2%之间。其坡向应当和自然地形坡向相同,形成北高南低;10kV的配电装置根据实际需求设置为悬吊式的管形母线,管形与连续的5跨架构平行于A点的方向。因为考虑到10kV的设备安装及其运转,底面坡度设计于A点
15、方向是高低不可太大。所以控制连续跨构架、管形母线在A点方向垂直于管形母线的方向,形成东高西低,坡度设计为1.5%左右。 变电站站址区域内若土质是粉土、石方混合,土质的分布应当分布连贯并且具有自重的中等湿陷性。综合了地质和变电站的总平面与竖向布置设计情况,通常要对变电站区域中的填方区地基进行相应的强夯处理,以保证变电站站址区域内的土方平衡。 7.3 配电装置概述配电装置是发电厂和变电所的重要组成部分,它是根据主接线的联结方式,由开关电器、保护和测量电器,母线和必要的辅助设备组建而成,用来接受和分配电能的装置。配电装置按电器装设地点不同,可分为屋内和屋外配电装置。7.3.1配电装置特点屋内配电装置
16、的特点:1、由于允许安全净距小和可以分层布置而使占地面积较小;2、维修、巡视和操作在室内进行,不受气候影响;3、外界污秽空气对电器影响较小,可减少维护工作量;4、房屋建筑投资较大。屋外配电装置的特点:1、土建工作量和费用较少,建设周期短;2、扩建比较方便;3、相邻设备之间距离大,便于带电作业;4、占地面积大;5、受外界环境影响,设备运行条件差,须加强绝缘;6、不良气候对设备维修和操作有影响。7.3.2 配电装置类型及应用配电装置按电压等级的不同,可分为高压配电装置和低压配电装置;按安装地点的不同,可分为屋内配电装置、屋外配电装置;按其结构形式,又可分为装配式配电装置和成套配电装置。根据电气设备
17、和母线布置的高度,屋外配电装置可以分为中型、半高型和高型等。1、中型配电装置:中型配电装置的所有电器都安装在同一水平面内,并装在一定高度的基础上,使带电部分对地保持必要的高度,以便工作人员能在地面安全地活动,中型配电装置母线所在的水平面稍高于电器所在的水平面。这种布置特点是:布置比较清晰,不易误操作,运行可靠,施工和维修都比较方便,构架高度较低,抗震性能较好,所用钢材较少,造价低,但占地面积大,此种配电装置用在非高产农田地区及不占良田和土石方工程量不大的地方,并宜在地震烈度较高地区建用。这种布置是我国屋外配电装置普遍采用的一种方式,而且运行方面和安装枪修方面积累了比较丰富的经验。2、半高型配电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 35 kV 变电站 一次 部分 设计 16
限制150内