《传感器课程设计-电感式位移传感器(共23页).doc》由会员分享,可在线阅读,更多相关《传感器课程设计-电感式位移传感器(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上东北石油大学课 程 设 计课 程 传感器课程设计 题 目 电感式位移传感器应用电路设计 院 系 电气信息工程学院 专业班级 测控12-2 学生姓名 祖景瑞 学生学号 指导教师 邹彦艳 刘继承 2015年7 月 8日任务书课程 传感器课程设计题目 电感式位移传感器应用电路设计专业 测控技术与仪器 姓名 祖景瑞 学号 主要内容:本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,
2、光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。基本要求:1、能够检测 020cm 的位移;2、电压输出为 15V;3、电流输出为 420mA;主要参考资料:1 贾伯年,俞朴.传感器技术M.南京:东南大学出版社,2006:68-69.2 王煜东. 传感器及应用M.北京:机械工业出版社,2005:5-9.3 唐文彦.传感器M.北京:机械工业出版社,2007: 48-50.4 谢志萍.传感器与检测技术M.北京:高等教育出版社,2002:80-90.完成期限 指导教师 专业负责人 2015年 7 月 1 日专心-专注-专业摘 要测量位移的方法很多,现已形成多种位移传感器,而且有向小型化
3、、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控
4、制。关键词:电感式传感器;自感式传感器;测量位移;位移传感器目 录电感式位移传感器应用电路设计一、 设计要求1.功能与用途本设计要应用电感式传感器的原理来设计一个位移传感器的应用电路,要求能够检测能够检测020cm的位移;电压输出为15V;电流输出为420mA;并且能够通过LED进行数字显示,具有控制及数据处理等功能,结构简单、成本低等优点。2. 课题研究的意义无论是科学研究还是生产实践,需要进行位移测量的场合非常多,可用于位移测量的传感器的种类也很多。随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。要保证产品质量,对产品的检测和质量管理都提出了更高的要求。我们为此要设计一种精度的检测位移的
5、仪器。电感测微仪是一种分辨率极高、工作可靠、使用寿命很长的测量仪,应用于微位移测量已有比较长的历史.国外生产的电感测微仪产品比较成熟,精度高、性能稳定,但价格昂贵.国内生产的电感测微仪存在漂移大、工作可靠性不高、高精度量程范围小等问题,一直与国外的传感器水平保持一定的差距.在超精密加工技术迅猛发展的今天,这种测量精度越来越显得不适应加工技术发展的需求.该文针对这些问题,对电感传感器测量电路进行了一定的设计和改进.对电感测微仪的正弦波生成电路、交流放大电路、带通滤波电路、相敏检波电路等进行分析及相应设计。3. 国内外发展现状 电感式传感器利用电磁感应将被测位移转换成线圈的自感系数和互感系数的变化
6、,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。传感器分为自感式、互感式(如LVDT)、电涡流式三种。电感式传感器具有灵敏度和分辨力高,能测出微米的位移变化,传感器非线性误差可达%。伴随着各国航空航天、船舶等军事领域,及工业控制和农业现代化的不断发展,对位移传感器的需求量也不断上升,同时要求位移传感器不断地进行技术革新,不断地有新技术、新材料的运用,以满足不同场合、不同环境条件的需求。位移传感器的应用已经得到了广泛的发展,几乎可以用于各个领域的位移、位置、行程的自动测量和自动控制,以及测量预先被变成位移的各种物理量,比如:伸缩、膨胀、差压、振动、应变、流量、厚度、重量等等。位移
7、传感器同其他传感器一样,其发展的总趋势就是利用新材料、新工艺实现微型化、集成化、智能化,利用新原理、新方法实现更多种类的信息获取,辅以先进的信息处理技术提高传感器的各项技术指标,以适应更广泛的应用需求。(1) 微型化。各种控制仪器设备的功能越来越多,要求各个部件体积能占位置越小越好,因而传感器本身体积也是越小越好,这就要求发展新的材料和加工技术。近年来,随着微电子技术和微机械加工技术的日趋成熟,传感器制作技术进入了一个展新阶段。微电子技术和微机械加工技术相结合,器件结构从二维到三维,实现了进一步微型化、低功耗。(2) 集成化。集成传感器的优势是传统传感器无法达到的,它不仅是一个简单的传感器,而
8、且将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,可降低成本、增加产量。把传感器、信号调节电路、单片机集成在一个芯片上形成超大规模集成化的高级智能传感器已经成为一个新的发展趋势。(3) 智能化。智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多优点,具有判断和信息处理功能,可实现多传感器、多参数测量,有自检、自校和自诊断功能,测量数据可存取,且具有数据通信接口,能与微型计算机直接通信。智能化传感器已从传统传感器的单一功能、单一检测向多功能和多变量检测方向发展,它的准确度、稳
9、定性和可靠性都是传统传感器不可比拟的。(4) 无线网络化。无线传感器网络是当前国际上备受关注的、多学科高度交叉的新兴前沿研究热点领域,它综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。二、方案设计1、方案一利用电感式传感器的原理设计一个位移传感器的应用电路,设计的总体模块主要由直流稳压电源、振荡电路、电感传感器、解调器、差动放大电路、V/I 转换电
10、路、A/D 转换电路、LED显示电路等构成。总体设计框图如下。 直流稳压电路振荡电路电感式传感器解调差动放大电路V/I转换电路取样A/D转换电路LED显示220V图1 电感式位移传感器的设计总体框图图2为为螺管式自感传感器结构原理图。它由平均半径为 r 的螺管线圈、衔铁和磁性套筒等组成。随着衔铁插入的深度的不同将引起线圈泄露路径中磁阻变化,从而使线圈的电感发生变化。根据磁路结构,磁通主要由两部分构成:沿轴向贯穿整个线圈后闭合的主磁通m和经衔铁侧面气隙闭合的侧磁通s。因气隙较大,故磁性材料的磁阻可忽略不计。图2螺管式自感传感器原理图侧磁通通过衔铁侧面与线圈交链,交链部分只是衔铁侧面遮盖部分的线圈
11、。在线圈的轴向不同位置处,磁势是不同的,且交链到的线圈匝数也不一样。由图 2可知离线圈端面 x 处的磁势,根据两同心圆柱面磁极间的磁导计算公式,可得半径为 ra 的衔铁与内径为 D 的磁性套筒间的比磁导。于是,可得微分单元磁导以及x 处的微分单元磁通。整个线圈的总磁链为主磁链和侧磁链之和。由于传感器轴向气隙较大,存在磁通边缘效应,故可认为在衔铁移动的一定范围内主磁通近似不变。这时,衔铁位移仅引起侧电感 Ls 变化。 图3 磁通半径作用修正系数2. 方案二 系统主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器、A/D转换、LCD显示及单片机系统。正弦波振荡器为电感式传感器和相敏检波器提供了
12、频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中由线圈和电位器组成 的电感桥路上。工件的微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发生相对的变化。当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平衡。当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减少;若上线圈的电感量减少,下线圈的电感量则增加。交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正 比,频率与振荡器频率相同,相位与位移方向相对应的调制信号。此信号由相 敏检波器鉴出极性,得到一个与衔铁位移相对应的直流电压信号,经放大和 A/D 转换后输入到单片机,经过数据处理进
13、行显示。总体设计框图如下。正弦激励电路相敏检波电路电感式传感器LCD显示A/D转换电路程控放大电路图4 电感式位移传感器的设计总体框图三、传感器工作原理测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。电感式位移传感器是一种属于金属感应的线性器件,将直线或角位移的变化转换为线圈电感量变化,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,
14、可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。图4 自感式传感器工作原理示意图电感式传感器的原理是:自感式传感器是把被测量变化转换成自感L的变化,通过一定的转换电路转换成电压或电流输出。传感器在使用时,其运动部分与动铁心(衔铁)相连,当动铁芯移动时,铁芯与衔铁间的气隙厚度发生改变,引起磁路磁阻变化,导致线圈电感值发生改变,只要测量电感量的变化,就能确定动铁芯的位移量的大小和方向。 (1) (2)式中:N线圈匝数;Rm磁路的总磁阻。四、电路的工作原理 该系统主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器、A/D转换、LCD显示及单片机系统。正弦
15、波振荡器为电感式传感器和相敏检波器提供了频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中由线圈和电位器组成 的电感桥路上。工件的微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发生相对的变化。当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平衡。当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减少;若上线圈的电感量减少,下线圈的电感量则增加。交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正 比,频率与振荡器频率相同,相位与位移方向相对应的调制信号。此信号由相 敏检波器鉴出极性,得到一个与衔铁位移相对应的直流电压信号,经放大和 A
16、/D 转换后输入到单片机,经过数据处理进行显示。五、单元电路设计、参数计算和器件选择1、正弦激励电路传感器要求激励源必须非常的稳定,不能随负载和温度的变化。所以采用文氏桥振荡电路作为差动变压器的激励电源。正弦波振荡器由放大器和RC(电阻电容)或LC(电感电容)电路组成,这种振荡器的振荡频率是可调的。正弦波振荡器也可以用晶体构成,但晶体振荡器的振荡频率是固定的。像张弛振荡器可以用来产生三角波、锯齿波、方波、脉冲波或指数形波形。 图5 正弦激励电路图2、相敏检波电路设计 相敏检波电路具有鉴别调制信号相位和选频能力的检波电路。图6 相敏检波电路图3、程控放大电路 程控放大电路是采用反相放大电路的基本
17、形式,反相放大电路的特点:运放两个输入端电压相等并等于0,故没有共模输入信 号,这样对运放的共模抑制比没有特殊要求;电路在深度负反馈条件下,电路的输 出电阻近似为0。 图7 程控放大电路图4、 A/D转换电路模块 模拟信号在时间和数值上都是连续的,而数字信号在时间和数值上都是离散的,所以进行模数转换时只能在一些选定的瞬间对输入的模拟信号进行采样,使它变成时间上离散的采样信号,然后将信号保持一定的时间,以便在此时间内对其进行量化,使采样值变成数值上离散的量化值,再按一定的编码形式转换成数字量。完成一次A/D转换通常需要经历采样、量化和编码3个步骤。不同的量化和编码过程对应不同原理的A/D转换器。
18、 图8 A/D转换模块5、参数计算标定公式如下: (3)式中:U为测头电路系统输出电压值,V;k为测头灵敏度,mV /mm; S 为测头位移量,mm; b为零位电压值偏移量,mV。由标定记录可得到:1) 测头的灵敏度左齿面: - mV /mm;右齿面: mV /mm.2) 测头位移量线性测量范围左齿面: 31251112m;右齿面: 41150717m.3) 零位电压值偏移量左齿面: 41412 mV;右齿面: 51027 mV.实验数据表明测头电路系统测量精度较高,线性测量线性范围大( 500 m) , 满足891EA齿轮测量中心的测量需求。6、器件选择R1、C1 为时钟振荡的 RC 网络。
19、R2、R3 是基准电压的分压电路,R2 是可调电阻,R3 是固定电阻。调整 R2 使基准电压 VREF=。R2 一般采用精密多圈电位器。R4、C3 为输入端阻容滤波电路,以提高仪表的抗干扰能力,并能增强仪表的过载能力。因 7107 输入阻抗很高,输入电流极小,故可取 R4=1M,C3=。C2、C4 分别是基准电容和自动调零电容。R5、C5 分别是积分电阻和积分电容。7、系统需要的元器件清单表1 元器件清单编号名称型号数量R1电阻RC网络1R2电阻分压电路1R3电阻分压电路1R4电阻输入端1R5电阻积分电阻1C1电容RC网络1C2电容基准电容1C3电容输入端1C4电容自动调零1C5电容积分电容1
20、六、总结该设计的电路模块主要包括直流稳压电源、振荡电路、电感传感器、解调器、差动放大电路、V/I 转换电路、A/D 转换电路、LED 显示电路等,结构简单,容易实现。短短的一个星期的课程设计让我受益颇多。虽然课程设计对我们来说还比较困难,但是我们并没有因此而退缩,而是凭着一丝不苟和持之以恒的精神,如期完成了任务。通过这次传感器课程设计,让我对传感器的相关知识有了进一步的了解,特别是对位移传感器这个方面的知识更是收获不少。课程设计不仅拓展了我们的知识,而且更让我们切身认识到所学知识的用途,传感器做为自动控制系统中不可缺少的部分,在测控理论中也起着非常重要的作用,让我们充分认识到它的重要性。我相信
21、通过或这次课程设计,将会对我们今后的工作或多或少的带来帮助。希望以后能够有更多实践的机会,让我们在实践中学习知识,在实践中掌握知识,更在实践中拓展知识。参考文献1 贾伯年,俞朴.传感器技术M.南京:东南大学出版社,2006:68-69 .2 王煜东. 传感器及应用M.北京:机械工业出版社,2005:5-9.3 唐文彦.传感器M.北京:机械工业出版社,2007: 48-50.4 谢志萍.传感器与检测技术M.北京:高等教育出版社,2002:80-90.5 张国维.测控电路M.北京:机械工业出版社,2007.6 刘守义.单片机应用技术M.北京:西安电子科技大学出版社,2004.东北石油大学课程设计成绩评价表课程名称传感器课程设计题目名称电感式位置传感器应用电路设计学生姓名祖景瑞学号指导教师姓名邹彦艳刘继承职称副教授 教授序号评价项目指 标满分评分1工作量、工作态度和出勤率按期圆满的完成了规定的任务,难易程度和工作量符合教学要求,工作努力,遵守纪律,出勤率高,工作作风严谨,善于与他人合作。202课程设计质量课程设计选题合理,计算过程简练准确,分析问题思路清晰,结构严谨,文理通顺,撰写规范,图表完备正确。453创新工作中有创新意识,对前人工作有一些改进或有一定应用价值。54答辩能正确回答指导教师所提出的问题。30总分评语:指导教师: 年 月 日
限制150内