人教版七年级下册数学第九章教案(共12页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版七年级下册数学第九章教案(共12页).doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学第九章教案(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上七年级数学第九章教案9.1.1不等式及其解集教学目标1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。重点难点 不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。教学过程 一、情景导入投影1一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A
2、地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系。二、不等式的概念若设车速为每小时x千米,你能用一个式子表示上面的关系吗?50/x2/3 或2/3x5 像这样用“”或“”、“6 (5) 2m 50成立: 76,73,79,80,74. 9,75.1,90,60 76, 79,80, 75.1,90能使不等式2/3x 50成立。我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个, 你还能找出这个不等式的其他解吗?它的解到底有多少个? 如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地
3、,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x 50的解集,写作x 7 5,这个解集可以用数轴来表示。o75求不等式的解集的过程叫做解不等式四、例题例投影4在数轴上表示下列不等式的解集:(1)x-1;(2)x-1;(3)x”、 “3 , 5+2 3+2, 5-2 3-2;(2)-12, 65 25, 6(-5) 2(-5);(4)-2”, “b,则2a 2b;(2)若-2y10,则y -5;(3)若a0,则ac-1 bc-1;(4)若ab,c”或“,(2),(4)。四、 课堂练习1、判断正误:投影3(1)a b ab bb(2)a b a/3b/
4、3(3)a b 2a 0 a 02、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。投影4(1)a3 b3 (2)a/3b/3(3)4a 4b (4)1-1/2a1-1/2b3、填空投影5(1) 2a 3a a是 数(2)a/3a/2 a是 数(3)ax 1 a是 数作业:课本128面4、5、7。9.1.2 不等式的性质(二)教学目标掌握一元一次不等式的解法。 重点难点 一元一次不等式的解法是重点;不等式性质3在解不等式中的运用是难点。教学过程一、复习导入投影1不等式的性质有哪些?不等式的性质与等式的性质有什么不同?和利用等式的性质可以解方程一样,利用不等式的性质可以解不等
5、式。二、不等式的解法例1 解下列不等式,并在数轴上表示解集:投影2(1) x726 (2)3x 2x1(3)2/3x 50 (4)-4x3分析:解不等式最终要变成什么形式呢?就是要使不等式逐步化为xa或x a的形式。解:(1) x726根据等式的性质1,得x7+726+7 x33 33O(2)3x 2x1 根据等式的性质1,得3x-2x 2x1-2x x1 1O(3)2/3x 50根据等式的性质2,得x 503/2 x 7 5 O75(4)-4x3根据等式的性质3,得 x-3/4。 O-3/4注意:运用不等式的性质1,实际上是方程中的“移项”。例2 解不等式:1/2x-12/3(2x+1) 投
6、影1分析:我们知道,解不等式的依据是不等式的性质,而不等式的性质与等式的性质类似,因此,解一元一次不等式的步骤与解一元一次方程的步骤基本相同。解:去分母,得 3x-64(2x+1)去括号,得 3x-68x+4移项,得 3x-8x4+6合并,得-5x10系数化为1,得 x-2归纳:解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)糸数化为1。四、课堂练习课本127面练习1题;134面练习1题。作业:课本134面1题。9.1.2 不等式的性质(三)教学目标运用不等式解决有关的问题,初步认识一元一次不等式的应用价值。重点难点 不等式的运用是重点;寻找不等关系是难
7、点。教学过程一、复习新课上节课我们学习了不等式的解法,请问:解不等式的依据是什么?解不等式的步骤是什么?有很多问题与不等式相联系,需要运用不等式来解决。二、不等式的初步应用例1投影1三角形任意两边之差与第三边有着怎样的大小关系?分析:三角形任意两边之和与第三边有着怎样的大小关系? abc解:设 a、b、c为任意一个三角形的三条边的长,则a+bc, b+ca, c+ab.移项,得ac-b, ba-c, cb-a.上面的式子说明了什么?三角形中任意两边之差小于第三边。归纳:三角形任意两边之和大于第三边,任意两边之差小于第三边。例2 投影2 已知x=3-2a是不等式1/5(x-3)x-3/5的解,求
8、a的取值范围。分析:由不等式解的意义,你能知道什么?解:依题意,得 1/5(3-2a) -3(3-2a) -3/5 1/5(-2a)12/5-2a -2a12-10a 8a12 a3/2例3投影3 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备继续向它注水用V(单位: cm3)表示新注入水的体积,写出V的取值范围。分析:新注入水的体积应满足什么条件?新注入水的体积与原有水的体积的和不能超过容器的体积。解:依题意,得 V+3533510 V105。思考:这是问题的答案吗?为什么?不是,因为新注入水的体积不能是负数,所以V0。 0V105在数轴上表示为
9、: O105注意:解答实际问题时,一定要考虑问题的实际意义。三、课堂练习1、课本127面练习2;2、补充题:投影4小华准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本,请问她最多还能买几支笔?作业:课本134面2、3;128面9;129面10。9.2 实际问题与一元一次不等式(一)教学目标 学会从实际问题中抽象出不等式模型,会用一元一次不等式解决实际问题。重点难点 用一元一次不等式解决实际问题是重点;找不等关系是难点。教学过程一、导入新课我们知道,在生产和生活中存在大量的等量关系,与此同时,我们也看到在生产和生活中存在着大量的不等关系,解决这些问题,用不等式比较
10、方便。二、例题例1投影1 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题? 分析:“超过90分”是什么意思?本题的不等关系是什么?“超过90分”就是大于90分;不等关系是:答对的得分-答错或不答的扣分90。解:设小明答对x道题,则他答错或不答的题数为20-x。根据他的得分要超过90,得10x-5(20-x) 9010x-100+5x 9015x 90x 38/3 思考: 这是本题的答案吗?为什么? 这不是本题的答案。因为x是正整数且不能大于20,所以 小明至少要答对13题。例2投影2 2002年北京空气质量良好(二级以上)的天数与全
11、年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?分析:2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?本题的不等关系是什么?2002年北京空气质量良好的天数是36555%;2008年北京空气质量良好的天数是x+36555%;不等关系是:2008年北京空气质量良好的天数366 70%.解:设2008年北京空气质量良好的天数比2002年增加x天,依题意,得(x+36555%)/366 70%去分母,得x+200.5 256.2移项,合并同类项,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 第九 教案 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内