Iris数据判别分析(共20页).docx
《Iris数据判别分析(共20页).docx》由会员分享,可在线阅读,更多相关《Iris数据判别分析(共20页).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上Iris数据判别分析一、 提出问题R.A.Fisher在1936年发表的Iris数据中,研究某植物的萼片长、宽及花瓣长、宽。x1:萼片长,x2:萼片宽,x3:花瓣长,x4:花瓣宽。取自3个种类G1,G2,G3,每个种类50个样品,共150个样品。数据如下表所示。序号类别x1x2x3x4116033142236428562232652846154367315624536328511561463414373693151238262224515925932481810146361021126130461412260275116133653052201425625391115
2、365305518163582751191736832592318151331751925728451320362345423213773867222226333471623367335725243763066212534925451726155351322736730522328270324714292643245153026128401331148311623235930511833255243811343632550193536432532336152341423714936141382543045153937938642040144321324136733572142150351664
3、325826401244144301324537728672046363274918471473216248255264412492502333105037232602851148301435215138162533613049185414834192551503016256150321225736126561458364285621591433011160158401226115138194622673144146336228481864149301426515135142662563045156725827411068150341646914632142702602945157125726
4、351072157441547315036142743773061237536334562476358275119772571942137837230581679154341548015242151813713059218236431551883360304818843632956188524924331086256274213872573042128815542142891493115290377266923913602250159215439174932662946139425227391495260344516961503415297144191429825020351099255243
5、710100258273912101147321321021463115210336932572310426229431310537428611910625930421510715134152108150351331093562849201102602240101113732963181123672558181131493115111426731471511526323441311615437152117256304113118263254915119261284712120264294313121251253011122257284113123365305822124369315421125
6、1543913412615135143127372366125128365325120129261294714130256293613131269314915132364275319133368305521134255254013135148341621361483014113714523133138357255020139157381731401513815314125523401314226630441414326828481414415434172145151371541461523515214735828512414826730501714936333602515015337152(1
7、) 进行Bayes判别,并用回代法与交叉确认法判别结果;(2) 计算每个样品属于每一类的后验概率;(3) 进行逐步判别,并用回代法与交叉确认法验证判别结果。二、 判别分析用距离判别法,假定总体 G1,G2,G3的协方差矩阵1=2=3=。计算各个总体之间的马氏平方距离d2(Gi,Gj)形成的矩阵,其中dij2=d2Gi,Gj=(xi-x(j)TS-1(x(i)-x(j)线性判别函数是W1x=2.364x1+1.834x2-1.524x3-1.521x4-78.767W2x=1.510x1+0.558x2+0.665x3+0.419x4-70.541W3x=1.167x1+0.320x2+1.41
8、7x3+1.747x4-101.5012.1 Bayes判别假定1=2=3=。先验概率按比例分配,即p1=p2=p3=50150=13求得的线性判别函数W1x,W2x,W3(x)中关于变量x1x4的系数以及常数项均与上面结果相同。广义平方距离函数dj2x=x-xjTSj-1x-xj-2lnpj,j=1,2,3后验概率PGjx=exp-0.5dj2xi=13exp-0.5di2x,j=1,2,3以下是SPSS软件判别分析结果。分析觀察值處理摘要未加權的觀察值N百分比有效150100.0已排除遺漏或超出範圍群組代碼0.0至少一個遺漏區別變數0.0遺漏或超出範圍群組代碼及至少一個遺漏區別變數0.0總
9、計0.0總計150100.0群組統計資料类别平均數標準偏差有效的 N (listwise)未加權加權1x150.263.7955050.000x234.104.3395050.000x314.621.7375050.000x42.461.0545050.0002x159.365.1625050.000x227.503.3645050.000x342.604.6995050.000x413.261.9785050.0003x165.886.3595050.000x229.743.2255050.000x355.525.5195050.000x420.462.9365050.000總計x158.5
10、08.253150150.000x230.454.571150150.000x337.5817.653150150.000x412.067.718150150.000群組平均值的等式檢定Wilks Lambda ()Fdf1df2顯著性x1.393113.3142147.000x2.63841.6762147.000x3.0591180.1612147.000x4.075902.5042147.000聯合組內矩陣ax1x2x3x4共變異x127.1599.78316.7094.225x29.78313.5145.6103.464x316.7095.61018.5194.571x44.2253.
11、4644.5714.547相關x11.000.511.745.380x2.5111.000.355.442x3.745.3551.000.498x4.380.442.4981.000a. 共變異數矩陣具有 147 自由度。共變異數矩陣a类别x1x2x3x41x114.40010.9731.509.939x210.97318.8271.304.994x31.5091.3043.016.607x4.939.994.6071.1112x126.6439.00018.2905.578x29.00011.3168.3884.173x318.2908.38822.0827.310x45.5784.1737
12、.3103.9113x140.4349.37630.3296.158x29.37610.4007.1385.224x330.3297.13830.4595.797x46.1585.2245.7978.621總計x168.104-3.050125.84951.862x2-3.05020.893-31.831-11.530x3125.849-31.831311.628131.066x451.862-11.530131.06659.574a. 共變異數矩陣總計具有 149 自由度。變數已輸入/已移除a,b,c,d步驟已輸入Wilks Lambda ()統計資料df1df2df3確切 F統計資料df1
13、df2顯著性1x3.05912147.0001180.1612147.000.0002x2.03922147.000297.9004292.000.0003x4.02732147.000243.5026290.000.0004x1.02542147.000191.1338288.000.000在每一個步驟中,輸入最小化整體 Wilks Lambda 的變數。a. 步驟的數目上限為 8。b. 要輸入的局部 F 下限為 3.84。c. 要移除的局部 F 上限為 2.71。d. F 層次、容差或 VIN 不足,無法進行進一步計算。分析中的變數步驟允差要移除的 FWilks Lambda ()1x31
14、.0001180.1612x3.8741129.588.638x2.87437.484.0593x3.72941.949.043x2.78144.975.044x4.67129.889.0394x3.37944.010.040x2.64817.172.031x4.66022.391.033x1.3696.615.027不在分析中的變數步驟允差最低 允差要輸入的 FWilks Lambda ()0x11.0001.000113.314.393x21.0001.00041.676.638x31.0001.0001180.161.059x41.0001.000902.504.0751x1.445.4
15、4532.824.040x2.874.87437.484.039x4.752.75223.296.0442x1.375.37512.776.033x4.671.67129.889.0273x1.369.3696.615.025Wilks Lambda ()步驟變數數目Lambda ()df1df2df3確切 F統計資料df1df2顯著性11.059121471180.1612147.000.00022.03922147297.9004292.000.00033.02732147243.5026290.000.00044.02542147191.1338288.000.000分類處理摘要已處理1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Iris 数据 判别分析 20
限制150内