全等三角形--截长补短(共16页).doc
《全等三角形--截长补短(共16页).doc》由会员分享,可在线阅读,更多相关《全等三角形--截长补短(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第九讲全等三角形中的截长补短中考要求板块考试要求A级要求B级要求C级要求全等三角形的性质及判定会识别全等三角形掌握全等三角形的概念、判定和性质,会用全等三角形的性质和判定解决简单问题会运用全等三角形的性质和判定解决有关问题知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角(3)有公共边的,公共边常是对应边(4)有公共角的,公共角常是对应
2、角(5)有对顶角的,对顶角常是对应角(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)要想正确地表示两个三角形全等,找出对应的元素是关键全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等 (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等(3) 边边边定理(SSS):三边对应相等的两个三角形全等(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等全等三角形的应用:运
3、用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础重、难点重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL的判定是整个直角三角形的重点难点:本节的难点是全等三角形性质和判定定理的灵活应用。为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论弄清楚,哪几个是条件,决
4、定哪个结论,如何用数学符号表示,即书写格式,都要在讲练中反复强化例题精讲板块一、截长补短【例1】 (年北京中考题)已知中,、分别平分和,、交于点,试判断、的数量关系,并加以证明 【解析】 ,理由是:在上截取,连结,利用证得,利用证得,【例2】 如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系?【解析】 猜测.过点作交于点,又,而,【例3】 如图2-9所示已知正方形ABCD中,M为CD的中点,E为MC上一点,且BAE=2DAM求证:AE=BC+CE【解析】 分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其
5、为求证中的两条线段之和(),再证所构造的线段与求证中那一条线段相等(2)通过添辅助线先在求证中长线段()上截取与线段中的某一段(如)相等的线段,再证明截剩的部分与线段中的另一段()相等我们用(1)法来证明证 延长到,使,则由正方形性质知下面我们利用全等三角形来证明为此,连接交边于由于对顶角,所以,从而,于是,所以,是的平分线过引于因为是EAF的平分线,所以GB=GH,从而RtGBFRtGHE(HL),所以F=HEG,则 AF=AE(底角相等的三角形是等腰三角形),即 AE=BC+CE说明 我们也可以按分析(2)的方法来证明结论,为此可先作BAE的平分线AG交边BC于G,再作GHAE于H,通过证
6、明ABGAHG知AB=AH=BC下面设法证明HE=CE即可,请同学们自证【例4】 (“希望杯”竞赛试题)如图,ADAB,CBAB,DM=CM=,AD=,CB=,AMD=75,BMC=45,则AB的长为 ( )A. B. C. D. 【解析】 过点D作BC的垂线,垂足为E.AMD=75,BMC=45 DMC=60DM=CM CD=DMADAB,DEBC,CBAB,AMD=75ADM=EDCADMCDEAD=DE故ABED为正方形,AB=AD=,选D.【例5】 已知:如图,ABCD是正方形,FAD=FAE. 求证:BE+DF=AE.【解析】 延长CB至M,使得BM=DF,连接AM.AB=AD,AD
7、CD,ABBM,BM=DF ABMADFAFD=AMB,DAF=BAMABCDAFD=BAF=EAF+BAE=BAE+BAM=EAMAMB=EAMAE=EM=BE+BM=BE+DF.【例6】 以的、为边向三角形外作等边、,连结、相交于点求证:平分 【解析】 因为、是等边三角形,所以,则,所以,则有,在上截取,连结,容易证得,进而由得;由可得,即平分【例7】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、上,求的周长 【解析】 如图所示,延长到使.在与中,因为,所以,故.因为,所以.又因为,所以. 在与中,所以,则,所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 截长补短 16
限制150内