二次函数的应用-2年中考1年模拟备战2017年中考数学精品系列(原卷版)(共29页).doc
《二次函数的应用-2年中考1年模拟备战2017年中考数学精品系列(原卷版)(共29页).doc》由会员分享,可在线阅读,更多相关《二次函数的应用-2年中考1年模拟备战2017年中考数学精品系列(原卷版)(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上备战2017中考系列:数学2年中考1年模拟第三篇 函数解读考点知识点名师点晴二次函数的应用来源:Zxxk.Com1实际背景下二次函数的关系来源:Zxxk.Com来源:Zxxk.Com来源:会运用二次函数的性质求函数的最大值或最小值来解决最优化问题2将实际问题转化为数学中二次函数问题会根据具体情景,建立适当的平面直角坐标系3利用二次函数来解决实际问题的基本思路(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展考点归纳归纳 1:二次函数与几何的综合运用基础知识归纳:
2、 求点的坐标,求抛物线解析式,求线段长或图形面积的最值,点的存在性基本方法归纳:待定系数法、数形结合思想、分类讨论思想注意问题归纳:合理使用割补法表达面积,分类讨论要全面【例1】(2016四川省内江市)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围归纳 2:二
3、次函数与实际应用题的综合运用基础知识归纳:待定系数法求抛物线解析式,配方法求二次函数最值基本方法归纳:关键是熟练掌握二次函数的性质注意问题归纳:在求二次函数最值时一定要准确求出自变量的取值,特别要观察顶点是否在取值范围内,若在,则取顶点纵坐标为最值;若不在,则根据取值范围在对称轴左右和开口方向,利用增减性求最值【例2】(2016浙江省绍兴市)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2我们如果改变这个窗户的形状,上部改为由
4、两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明【例3】(2016山东省青岛市)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出据市场调查,若按每个玩具280元销售时,每月可销售300个若销售单价每降低1元,每月可多售出2个据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函
5、数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【例4】(2016广西钦州市)如图1,在平面直径坐标系中,抛物线与x轴交于点A(3,0)B(1,0),与y轴交于点C(1)直接写出抛物线的函数解析式;(2)以OC为半径的O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出PDE的面积关于x的函数关系式,并写出PDE面积的最大值2年中考【2016年题组】一、
6、选择题1(2016广西钦州市)如图,ABC中,AB=6,BC=8,tanB=,点D是边BC上的一个动点(点D与点B不重合),过点D作DEAB,垂足为E,点F是AD的中点,连接EF,设AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是()ABC D二、填空题2(2016山东省日照市)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为 米3(2016江苏省扬州市)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a0)未来30天,
7、这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元通过市场调研发现,该时装单价每降1元,每天销量增加4件在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为 4(2016浙江省台州市)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t= 5(2016浙江省衢州市)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开
8、(如图)已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为 m2三、解答题6(2016山东省淄博市)已知,点M是二次函数(a0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MNx轴,垂足为点N,求证:MF=MN+OF7(2016山东省潍坊市)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数发现每天的营运规律如下:当x不
9、超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆已知所有观光车每天的管理费是1100元(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?8(2016山东省青岛市)如图,需在一面墙上绘制几个相同的抛物线型图案按照图中的直角坐标系,最左边的抛物线可以用(a0)表示已知抛物线上B,C两点到地面的距离均为m,到墙边OA的距离分别为m,m(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最
10、多可以连续绘制几个这样的拋物线型图案?9(2016云南省)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值10(2016四川省成都市)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少根据经验估计,每多种一棵
11、树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?11(2016江苏省南京市)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为、,且tan=,tan=,以O为原点,OA所在直线为x轴建立直角坐标系(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?12(2016江苏省宿迁市)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30m100)人时,每增加1人,
12、人均收费降低1元;超过m人时,人均收费都按照m人时的标准设景点接待有x名游客的某团队,收取总费用为y元(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围13(2016江苏省徐州市)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与其价格x(元)(180x300)满足一次函数关系,部分对应值如表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆
13、当日利润最大?求出最大值(宾馆当日利润=当日房费收入当日支出)14(2016浙江省丽水市)如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线的绳子(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2k2.5时,求m的取值范围15(2016浙江省杭州市)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面
14、的高度h(米)适用公式(0t4)(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数,()当t=或时,足球距离地面的高度都为m(米),求m的取值范围16(2016浙江省舟山市)小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并
15、说明它的实际意义;(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线OBC所示,行驶路程s(m)与时间t(s)的关系也满足,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度17(2016湖北省十堰市)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最
16、大利润是多少?18(2016湖北省黄冈市)东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为:,且其日销售量y(kg)与时间t(天)的关系如下表:(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n9)给“精准扶贫”对象现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围19(2016湖北省咸宁市)某网店销售某款童装,每件售
17、价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?20(2016湖北省武汉市)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件已知产销两种产品的有关信息如表:其中a为常数,且3a5(1)若产销甲、乙两种产品的年利润分别为万元、万元,直接写出、与x的函数关系式;(2)分别求出产销
18、两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由21(2016贵州省铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12x30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?22(2016贵州省黔东南州)凯里市某文具店某种型号的计算器每只进价1
19、2元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家
20、一次应卖多少只?这时的售价是多少?23(2016湖北省襄阳市)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围24(2016湖北省鄂州市)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全
21、部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数)(1)直接写出每天游客居住的房间数量y与x的函数关系式(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:当日所获利润不低于5000元,宾馆为游客居住的房间共支出费用没有超过600元,每个房间刚好住满2人问:这天宾馆入住的游客人数最少有多少人?25(2016湖北省随州市)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1x90,
22、且x为整数)的售价与销售量的相关信息如下已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元)(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果26(2016湖北省黄石市)科技馆是少年儿童节假日游玩的乐园如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数图中曲线对应的函数解析式为,10:00之后来的游客较少可忽略不计(1)请写出图中曲线对应的函数解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 应用 年中 模拟 备战 2017 数学 精品 系列 原卷版 29
限制150内