数学教育概论考试大纲(共12页).doc
《数学教育概论考试大纲(共12页).doc》由会员分享,可在线阅读,更多相关《数学教育概论考试大纲(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数学教育概论复习大纲第二章 1. 数学观的变化 (1)公理化方法、形式演绎仍然是数学的特征之一,但是数学不等于形式。数学正在走出形式主义的光环。 (2)在计算机技术的支持下,数学注重应用。 (3)数学不等于逻辑,要做“好”的数学。 2. 20世纪我国数学教育观的变化 (1)由关心教师的“教”转向也关注学生的“学”; (2)从“双基”与“三力”观点的形成,发展到更宽广的能力观和素质观; (3)从听课、阅读、演题到提倡实验、讨论、探索的学习方式; (4)从看重数学的抽象和严谨到关注数学文化、数学探究和数学应用。 3. 我国影响较大的几次数学教改实验(P38) 尝试指导、效
2、果回授教学法 数学开放题的教学模式 提高课堂效益的初中数学教改实验 情景-问题数学学习模式 数学方法论的教育方式 4.作为社会文化的数学教育 数学史人类文明的火车头, 数学打上了人类各个文化发展阶段的烙印, 数学应从社会文化中汲取营养, 数学思维方式对人类文化的独特贡献, 数学成为描述自然和社会的语言5.21世纪之后,中国的数学教育正在发生重大变化 教育受到空前的重视, 数学素质教育需要解决的问题, 基础教育数学课程改革的不断深入, 高等师范院校面临新的挑战 第三章 弗赖登塔尔简介:世界著名数学家和数学教育家,他曾经是荷兰皇家科学院的院士和数学教育研究所所长,专长为李群和拓扑学。1960年以后
3、研究重心转向数学教育。在1967年1970年期间任“国际数学教育委员会”(ICMI)主席。在他的倡议下召开了第一届“国际数学教育大会”。代表作作为数学教育任务的数学,除草与播种,数学教育再探1. 弗赖登塔尔的数学教育理论 : 倡导数学教育研究要像研究数学一样,以科学论文的形式交流研究心得,并有详细文献支持,因而使数学教育研究不再只停留在经验交流的水平上。 2. 数学教育有五个主要特征:(1)情境问题是教学的平台; (2)数学化是数学教育的目标; (3)学生通过自己努力得到的结论和创造是教育内容的一部分 (4)“互动”是主要的学习方式; (5)学科交织是数学教育内容的呈现方式。 这些特征可以用三
4、个词加以概括: 现实、数学化、再创造(指通过教师精心设计、创造问题情境,学生自己动手实验研究、合作商讨、探索问题的结果并进行组织的学习方式,其核心是数学过程的再现。) 3. 现实数学教育所说的数学化有两种形式: (1)实际问题转化为数学问题的数学化 (2)从符号到概念的数学化 波利亚简介:法国科学院,美国科学院课匈牙利科学院的院士,1887年出生在匈牙利,青年时期曾在布达拉斯,维也纳,哥廷根,巴黎等地攻读数学,物理学和哲学,获硕士学位。1914年在苏黎世著名的瑞士联邦理工学院任教。1940年移居美国,1942年起任美国斯坦福大学教授。代表作:怎样解题,数学的发现,数学与猜想 4. 波利亚的数学
5、教育观 : 中学数学教育的根本目的是“教会学生思考”。教师在教学时须遵循三个原则,即主动学习,最佳动机,循序渐进。并且数学老师必须具备数学内容知识和数学教学法的知识。 解题步骤:了解问题,拟定计划,实现计划,回顾。建构主义的数学教育理论:知识不是通过感官或交流被动获得的,而是通过认识主体的反省抽象来主动建构的;有目的的活动和认知结构的发展存在着必然的联系;儿童是在于周围环境相互作用的过程中,逐步建构起关于外部世界的认识,从而使自身认知结构得到发展。 5. 数学知识是什么 :建构主义学说认为,数学知识并非绝对真理,即不是现实世界的纯粹客观的反映。数学只不过是人们对客观世界的一种解释、假设或假说,
6、并将随着人们认识程度的深入而不断地变革、升华和改写,直至出现新的解释和假设。 6. 儿童如何学习数学 : 数学教学应该符合学生的年龄特征、知识基础以及个性特点,不能不顾教学对象盲目施教。 7. 数学教师在建构主义的课堂上就需要做6件事情: 1.加强学生的自我管理和激励他们为自己的学习负责; 2.发展学生的反省思维; 3建立学生建构数学的“卷宗”; 4观察且参与学生尝试、辨认与选择解题途径的活动; 5反思与回顾解题途径; 6明确活动、学习材料的目的。 8.数学教学的双基:数学的基础知识和基本技能9.双基教学的四个特征:1.记忆通向理解形成直觉2.运算速度保证高效思维3.演绎推理坚持逻辑精神4.依
7、靠变式提升演练水准 双基教学的经验 :1. “启发式”教学,这是教师在演讲时永远应当坚持的传统,不能忘记。 2.“精讲多练”,当年育才中学的经验至今仍不过时。 3.“变式练习”,保证了数学双基训练不是机械练习。 4.“小步走,小转弯,小坡度”的三小教学法 “大容量、快节奏、高密度”的复习课,独具特色。双基发展为四基:基本知识,基本技能,基本思想,基本活动经验。双基教学被异化体现:1.双基目标偏高2.双基内容被肢解3.双基训练被异化4.双基评价片面化 第四章 1. 数学教育的基本功能 (1)实用性功能 (2)思维训练功能 (3)选拔性功能 2. 数学教学的原则: 1.学习数学化原则 2.适度形式
8、化原则 3.问题驱动原则 4.渗透数学思想方法原则 3. 数学知识转化为教育形态的方式 一是靠对数学的深入理解,二是要借助人文精神的融合。 4、数学教学原则有哪四条?P79(1)学习数学化原则(2)适度形式原则(3)问题驱动原则(4)渗透数学思想方法原则 5、从宏观到微观数学思想方法分为哪几个层次?P88(1)基本的和重大的数学思想方法(2)与一般科学方法相应的数学方法(3)数学中特有的方法 (4)中学数学中的解题方法 6. 数学能力 数学思维能力:人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想像、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 教育 概论 考试 大纲 12
限制150内