高中数学必修5《1.1.1-正弦定理》教学设计(共10页).doc
《高中数学必修5《1.1.1-正弦定理》教学设计(共10页).doc》由会员分享,可在线阅读,更多相关《高中数学必修5《1.1.1-正弦定理》教学设计(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高中数学必修51.1.1 正弦定理教学设计一、教学内容分析“正弦定理”是普通高中课程标准数学教科书数学(必修5)(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。本节课是“正弦定理”教学的第一课时,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。
2、因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。二、学生学习情况分析学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定理是关于任意三角形边角关系的重要定理之一,课程标准强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数
3、学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。四、
4、教学目标1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。3、情感态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。五、教学重点与难点重点:正弦定理的发现和推导难点:正弦定理的推导教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。六、教学过程设计(一)设置情境 教师:展示情景图如图1,船从港口B航行到港口C,测得BC
5、的距离为,船在港口C卸货后继续向港口A航行,由于船员的疏忽没有测得CA距离,如果船上有测角仪我们能否计算出A、B的距离? 学生:思考提出测量角A,C。 教师:若已知测得,如何计算A、B两地距离? 师生共同回忆解直角三角形,直角三角形中,已知两边,可以求第三边及两个角。直角三角形中,已知一边和一角,可以求另两边及第三个角。 教师引导:是斜三角形,能否利用解直角三角形,精确计算AB呢? 学生:(思考交流)得出过点A作AD BC于D(如图2),把分为两个直角三角形,解题过程,学生阐述,教师板书。 解:过点A作AD BC于D在中,在中,教师继续引导:在上述问题中,若AC=b,AB=c,能否用B、b、C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1.1-正弦定理 高中数学 必修 1.1 正弦 定理 教学 设计 10
限制150内