圆锥曲线全国卷高考真题解答题 (共39页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《圆锥曲线全国卷高考真题解答题 (共39页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线全国卷高考真题解答题 (共39页).doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.22019年全国统一高考数学试卷(理科)(新课标)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|32014年全国普通高等学校招生统一考试理科数学(新课标)已知点A(0,2),椭圆E
2、: (ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.42015年全国普通高等学校招生统一考试理科数学(新课标)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由52015年全国普通高等学校招生统一考试理科数学(新课标带解析)在直角坐标系中,曲线C:y=与直线交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()
3、y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.62016年全国普通高等学校招生统一考试文科数学(新课标3)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点()若在线段上,是的中点,证明;()若的面积是的面积的两倍,求中点的轨迹方程.72016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k (k 0)的直线交E于A,M两点,点N在E上,MANA()当t=4,时,求AMN的面积;()当时,求k的取值范围.82016年全国普通高等学校招生统一考试理科数学(新课标1卷)设圆的圆心为A,直线l过点B(1,0)
4、且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.92017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.102018年全国卷理数高考试题文已知斜率为的直线与椭圆交于,两点,线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明
5、:,成等差数列,并求该数列的公差112017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.()求C的方程;()设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为1,证明:l过定点.122018年全国普通高等学校招生统一考试理数(全国卷II)设抛物线的焦点为,过且斜率为的直线与交于,两点, (1)求的方程; (2)求过点,且与的准线相切的圆的方程132018年全国普通高等学校招生统一考试理科数学(新课标I卷)设椭圆的右焦点为,过的直线与交于两点,点的坐标
6、为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.142018年全国普通高等学校招生统一考试文科数学(新课标I卷)设抛物线,点,过点的直线与交于,两点(1)当与轴垂直时,求直线的方程;(2)证明:152018年全国卷文数高考试题已知斜率为的直线与椭圆交于,两点线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明:162017年全国普通高等学校招生统一考试文科数学(新课标1卷)设、为曲线:上两点,与的横坐标之和为(1)求直线的斜率;(2)为曲线上一点,在处的切线与直线平行,且,求直线的方程172017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O为坐标原点,动
7、点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.182017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.19(2016新课标全国卷文科)在直角坐标系中,直线l:y=t(t0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.()求;()除H以外,直线MH与C是否有其它公共点
8、?说明理由.202015年全国普通高等学校招生统一考试文科数学(新课标)已知椭圆的离心率为,点在上(1)求的方程(2)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.212019年全国统一高考数学试卷(文科)(新课标)已知曲线,为直线上的动点,过作的两条切线,切点分别为.(1)证明:直线过定点:(2)若以为圆心的圆与直线相切,且切点为线段的中点,求该圆的方程.222014年全国普通高等学校招生统一考试理科数学(全国卷带解析)设, 分别是椭圆: 的左、右焦点, 是上一点且与轴垂直,直线与的另一个交点为.(1)若直线的斜率为,求的离心率;(2)若
9、直线在轴上的截距为,且,求, .232014年全国普通高等学校招生统一考试文科数学(新课标)已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积242015年全国普通高等学校招生统一考试文科数学(新课标)已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,
10、)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【答案】(1)见详解;(2) 3或.【分析】(1)可设,然后求出A,B两点处的切线方程,比如:,又因为也有类似的形式,从而求出带参数直线方程,最后求出它所过的定点.(2)由(1)得带参数的直线方程和抛物线方程联立,再通过为线段的中点,得出的值,从而求出坐标和的值,分别为点到直线的距离,则,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设,则又因为,所以.则切线DA的斜率为,故,整理得.设,同理得.,都满足直线方程.于是直线过点,而两个不同的点确定一条直线,所以直线方程为.即,当时等式恒成立所以直线恒过定点.(
11、2)由(1)得直线的方程为.由,可得,于是.设分别为点到直线的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则,由于,而,与向量平行,所以,解得或.当时,;当时因此,四边形的面积为3或.【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以思路较为清晰,但计算量不小22019年全国统一高考数学试卷(理科)(新课标)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|【答案】(1);(2).【分析】(1)设直线:,;根据抛物线焦半径公式可得;联
12、立直线方程与抛物线方程,利用韦达定理可构造关于的方程,解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.【详解】(1)设直线方程为:,由抛物线焦半径公式可知: 联立得:则 ,解得:直线的方程为:,即:(2)设,则可设直线方程为:联立得:则 , , 则【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.32014年全国普通高等学校招生统一考试理科数学(新课标)已知点A(0,2),椭圆E: (ab0)的离心率为,
13、F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.【答案】(1) (2) 【解析】试题分析:设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,. 又解得,所以椭圆的方程为.(2)解:设由题意
14、可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.42015年全国普通高等学校招生统一考试理科数学(新课标)已知椭圆,直线
15、不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由【答案】()详见解析;()能,或【解析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由 ()得的方程为设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,由得, 直线的斜率,即即直线的斜率与的斜率的乘积为定值 (2)四边形
16、能为平行四边形直线过点,不过原点且与有两个交点的充要条件是,由 ()得的方程为设点的横坐标为由得,即将点的坐标代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即解得, ,当的斜率为或时,四边形为平行四边形 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其
17、次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个坐标,最后求斜率.52015年全国普通高等学校招生统一考试理科数学(新课标带解析)在直角坐标系中,曲线C:y=与直线交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.【答案】()或()存在【详解】试题分析:()先求出M,N的坐标,再利用导数求出M,N.()先作出判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,
18、利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标.试题解析:()由题设可得,或,.,故在=处的导数值为,C在处的切线方程为,即.故在=-处的导数值为-,C在处的切线方程为,即.故所求切线方程为或.()存在符合题意的点,证明如下:设P(0,b)为复合题意得点,直线PM,PN的斜率分别为.将代入C得方程整理得.=.当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补,故OPM=OPN,所以符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力62016年全国普通高等学校招生统一考试文科数学(新课标3)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点
19、,交的准线于两点()若在线段上,是的中点,证明;()若的面积是的面积的两倍,求中点的轨迹方程.【答案】()见解析;()【解析】试题分析:设 的方程为(1)由在线段上 ,又 ;(2)设与轴的交点为 (舍去),设满足条件的的中点为当与轴不垂直时 当与轴垂直时 与重合所求轨迹方程为试题解析:由题设,设,则,且记过两点的直线为,则的方程为3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以5分(2)设与轴的交点为,则,由题设可得,所以(舍去),设满足条件的的中点为当与轴不垂直时,由可得而,所以当与轴垂直时,与重合,所以,所求轨迹方程为12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;
20、3.轨迹求法72016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k (k 0)的直线交E于A,M两点,点N在E上,MANA()当t=4,时,求AMN的面积;()当时,求k的取值范围.【答案】();().【解析】试题分析:()先求直线的方程,再求点的纵坐标,最后求的面积;()设,写出A点坐标,并求直线的方程,将其与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由及t的取值范围求的取值范围.试题解析:()设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.因此的面积
21、.()由题意,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.【考点】椭圆的性质,直线与椭圆的位置关系 【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解82016年全国普通高等学校招生统一考试理科数学(新课标1卷)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1
22、于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】()答案见解析;().【解析】试题分析:()利用椭圆定义求方程;()把面积表示为关于斜率k的函数,再求最值。试题解析:()因为,故,所以,故.又圆的标准方程为,从而,所以.由题设得,由椭圆定义可得点的轨迹方程为:().()当与轴不垂直时,设的方程为,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,四边形的面积为12.综上,四边形面积的取值范围为.【考点】圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线全国卷高考真题解答题 共39页 圆锥曲线 全国卷 高考 题解 答题 39
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内