细晶强化工艺及其应用(共7页).doc
《细晶强化工艺及其应用(共7页).doc》由会员分享,可在线阅读,更多相关《细晶强化工艺及其应用(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上LANZHOU UNIVERSITY OF TECHNOLOGY材料强韧化(结课论文)题 目 细晶强化机理及其工艺 学生姓名 闫 旺 学 号 1 专业班级 材料加工工程 任课教师 季根顺 学 院 材料科学与工程学院 日 期 2014.04.30 第 页 细晶强化机理及其工艺材料加工工程 闫旺 1摘 要金属是由许多组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。在下的细晶粒金属比粗晶粒金属有更高的强度、塑性和韧性。这是因为细受到外力发生可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,面积越大,晶界越曲折,越不利于裂纹
2、的扩展。工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。关键字:细晶强化 位错 晶界 ABSTRACTPolycrystalline metal is composed of a plurality of grains, the grain size can be used within a number of grains per unit volume expressed as the number, the more fine grains. At room temperature, the metal fine grains have a higher strength, har
3、dness, ductility and toughness of metals coarse grain. This is because the fine grains can be plastically deformed by external force in a more dispersed crystal grains, uniform plastic deformation, the stress concentration is small; Furthermore, the finer the grain size, the larger the grain boundar
4、y area, the more tortuous the grain boundary, Vietnam is not conducive to crack. Industry will be through grain refinement to improve the strength of the material is known as fine grain strengthening.Key words:Fine grain strengthening Grain boundary dislocations一、细晶强化简述通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内
5、晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是
6、塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使
7、晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大 。细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。二、 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与
8、金属强度的定量关系的一般表达式为: y0kd-n (1)式中,y为流变应力,0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常取0.5。这就是有名的Hall-Petch公式,是由Hall和Peteh两人最先在软钢中针对屈服强度建立起来的,并且后来被证明可广泛应用于各种体心立方、面心立方及六方结构金属和合金。大量试验结果已证明,此关系式还可适用于整个流变范围直至断裂,仅常数0和k有所不同而己。Hall-Petch公式是一个很好的经验公式,可以从不同的物理模型出发加以推导。常见的模型有以下几种:(一)位错塞积模型位错运动遇到障碍(晶界、第二相粒子以及不动位错等),如果其向前运动的力不能克
9、服障碍物的力,位错就会停在障碍物面前,由同一个位错源放出的其他位错也会被阻在障碍物前,这种现象称为位错塞积。紧挨障碍物的那个位错就被称为领头位错或领先位错,塞积的位错数目越多,领头位错对障碍物的作用力就越大,达到一定程度时,就会引起邻近晶粒的位错源开动,进而发生塑性变形或萌生裂纹。如图1 所示,外加切应力较小时,由于晶界的阻碍作用,会使晶粒1内由位错源S1放出的位错形成位错塞积,可在晶粒2内距其r远处产生较大的切应力,其值在rd/2时可写为 。此处0为位错在晶内运动所受阻力,d为晶粒直径。若设*为激活位于晶粒2中r处的位错源所需的临界切应力,则晶粒2的屈服条件可写为: (2) 即 (3)当dr
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 强化 工艺 及其 应用
限制150内