西安交通大学-计算方法上机报告(共34页).doc
《西安交通大学-计算方法上机报告(共34页).doc》由会员分享,可在线阅读,更多相关《西安交通大学-计算方法上机报告(共34页).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上计算方法上机报告姓 名: 学 号:班 级:机械硕4002上课班级: 02班 专心-专注-专业说明: 本次上机实验使用的编程语言是Matlab语言,编译环境为MATLAB 7.11.0,运行平台为Windows 7。1. 对以下和式计算:,要求: 若只需保留11个有效数字,该如何进行计算; 若要保留30个有效数字,则又将如何进行计算;(1) 算法思想1、根据精度要求估计所加的项数,可以使用后验误差估计,通项为: ;2、为了保证计算结果的准确性,写程序时,从后向前计算;3、使用Matlab时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数)(2)
2、算法结构1.;2.for if end;3.for (3)Matlab源程序clear; %清除工作空间变量clc; %清除命令窗口命令m=input(请输入有效数字的位数m=); %输入有效数字的位数s=0; for n=0:50 t=(1/16n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6); if t=10(-m) %判断通项与精度的关系 break; endend;fprintf(需要将n值加到n=%dn,n-1); %需要将n值加到的数值for i=n-1:-1:0 t=(1/16i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)
3、-1/(8*i+6); s=s+t; %求和运算ends=vpa(s,m) %控制s的精度 (4)结果与分析 当保留11位有效数字时,需要将n值加到n=7, s =3.; 当保留30位有效数字时,需要将n值加到n=22, s =3.。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。2. 某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示:分点0123456深度9.
4、018.967.967.978.029.0510.13分点78910111213深度11.1812.2613.2813.3212.6111.2910.22分点14151617181920深度9.157.907.958.869.8110.8010.93 请用合适的曲线拟合所测数据点; 预测所需光缆长度的近似值,作出铺设河底光缆的曲线图;(1)算法思想 如果使用多项式差值,则由于龙格现象,误差较大,因此,用相对较少的插值数据点作插值,可以避免大的误差,但是如果又希望将所得数据点都用上,且所用数据点越多越好,可以采用分段插值方式,即用分段多项式代替单个多项式作插值。分段多项式是由一些在相互连接的区间
5、上的不同多项式连接而成的一条连续曲线,其中三次样条插值方法是一种具有较好“光滑性”的分段插值方法。在本题中,假设所铺设的光缆足够柔软,在铺设过程中光缆触地走势光滑,紧贴地面,并且忽略水流对光缆的冲击。海底光缆线的长度预测模型如下所示,光缆从A点铺至B点,在某点处的深度为。海底光缆线的长度预测模型计算光缆长度时,用如下公式:(2)算法结构1.For 1.1 2.For 2.1 For 2.1.1 3.4.For 4.1 4.2 4.3 5.6.7.获取M的矩阵元素个数,存入m8.For 8.1 8.2 8.3 9.10.For 10.1 11.获取x的元素个数存入s12.13.For 13.1
6、if then ;break else 14.(3)Matlab源程序clear;clc; x=0:1:20; %产生从0到20含21个等分点的数组X=0:0.2:20;y=9.01,8.96,7.96,7.97,8.02,9.05,10.13,11.18,12.26,13.28,13.32,12.61,11.29,10.22,9.15,7.90,7.95,8.86,9.81,10.80,10.93; %等分点位置的深度数据n=length(x); %等分点的数目N=length(X);% 求三次样条插值函数s(x) M=y; for k=2:3; %计算二阶差商并存放在M中 for i=n:
7、-1:k; M(i)=(M(i)-M(i-1)/(x(i)-x(i-k+1); endendh(1)=x(2)-x(1); %计算三对角阵系数a,b,c及右端向量dfor i=2:n-1; h(i)=x(i+1)-x(i); c(i)=h(i)/(h(i)+h(i-1); a(i)=1-c(i); b(i)=2; d(i)=6*M(i+1);end M(1)=0; %选择自然边界条件M(n)=0;b(1)=2;b(n)=2;c(1)=0;a(n)=0; d(1)=0; d(n)=0; u(1)=b(1); %对三对角阵进行LU分解y1(1)=d(1);for k=2:n; l(k)=a(k)/
8、u(k-1); u(k)=b(k)-l(k)*c(k-1); y1(k)=d(k)-l(k)*y1(k-1);endM(n)=y1(n)/u(n); %追赶法求解样条参数M(i)for k=n-1:-1:1; M(k)=(y1(k)-c(k)*M(k+1)/u(k);ends=zeros(1,N);for m=1:N; k=1; for i=2:n-1 if X(m)0; sgn=1; elseif G(k,k)=0; sgn=0; else sgn=-1; end sgm=-sgn*sqrt(sum(G(k:m,k).2); w=zeros(1,n); w(k)=G(k,k)-sgm; fo
9、r j=k+1:m w(j)=G(j,k); end bt=sgm*w(k); G(k,k)=sgm; %变换Gk-1到Gk for j=k+1:n+1 t=sum(w(k:m)*G(k:m,j)/bt; for i=k:m; G(i,j)=G(i,j)+t*w(i); end endend A (n)=G(n,n+1)/G(n,n); %解三角方程求系数Afor i=n-1:-1:1 A (i)=(G(i,n+1)-sum(G(i,i+1:n).*A (i+1:n)/G(i,i);end e=sum(G(n+1:m,n+1).2); %计算误差efprintf(%d次函数的系数是:,h);
10、%输出系数a及误差edisp(A);fprintf(使用%d次函数拟合的误差是%f:,h,e);t=0:0.05:24;A=fliplr(A); %将系数数组左右翻转 Y=poly2sym(A); %将系数数组转化为多项式subs(Y,x,t);Y=double(ans);figure(1)plot(x,y,k*,t,Y,r-); %绘制拟合多项式函数图形xlabel(时刻); %标注坐标轴含义ylabel(平均气温);title(num2str(n-1),次函数的最小二乘曲线);grid;% 指数函数的最小二乘近似yy=log(y);n=3;G=;GG=;for j=0:(n-1) g=x.
11、j; %g(x)按列排列 G=vertcat(G,g); %g垂直连接G gg=t.j; %g(x)按列排列 GG=vertcat(GG,gg); %g垂直连接GendG=G; %转置得到矩阵Gfor i=1:m %将数据y作为G的最后一列(n+1列) G(i,n+1)=yy(i);endG; for k=1:n %形成矩阵Q(k) if G(k,k)0; sgn=1; elseif G(k,k)=0; sgn=0; else sgn=-1; end sgm=-sgn*sqrt(sum(G(k:m,k).2); w=zeros(1,n); w(k)=G(k,k)-sgm; for j=k+1:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 西安交通大学 计算方法 上机 报告 34
限制150内