代入消元法解二元一次方程组(共7页).doc
《代入消元法解二元一次方程组(共7页).doc》由会员分享,可在线阅读,更多相关《代入消元法解二元一次方程组(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上代入消元法解二元一次方程组(1)教学目标1、使学生学会用代人消元法解二元一次方程组;2、理解代人消元法的基本思想体现的化未知为已知的化归思想方法;3、逐步渗透矛盾转化的辩证思想教学难点代入消元法的基本思想。知识重点用代入法解二元一次方程组。教学过程(师生活动)设计理念创设情境引入课题一、 知识回顾1、由两个一次方程组成并含有两个未知数的方程组叫做二元一次方程组2、方程组里各个方程的公共解叫做这个方程组的解3、判断(1)二元一次方程组中各个方程的解一定是方程组的解( )(2)方程组的解一定是组成这个方程组的每一个方程的解 ( )二、 问题在一次篮球比赛中为了取得好名次,
2、他们想在全部22场比赛中得到40分已知每场比赛都要分出胜负,胜队得2分,负队得1分那么初一(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程 那么有哪些方法可以求得二元一次方程组的解呢? 问题情境是学生喜闻乐见的体育活动,增强求知欲,对所学知识产生亲切感。探究新知1、 引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)满足方程的解有:,,满足方程的解有:,这两个方程的公共解是2、师:这个问题能用一元一次方程来解决吗? 学生思考并列出式子 设胜x场,负(22x)场,解方程 2x(22x) =40 解法略 观察:上面的
3、二元一次方程组和一元一次方程有什么关系? 若学生还是感到困难,教师可通过提问进一步引导 (1)在一元一次方程解法中,列方程时所用的等量关系是什么? (2)方程组中方程所表示的等量关系是什么? (3)方程与的等量关系相同,那么它们的区别在哪里? (4)怎样使方程中含有的两个未知数变为只含有一个未知数呢? 结合学生的回答,教师做出讲解 由方程进行移项得y=22x, 由于方程中的y与方程中的y都表示负的场数,故可以把方程中的y用(22-劝来代换, 即得2x+(22x) =40.由此一来,二元化为一元了 解得x=18. 问题解完了吗?怎样求y 将x=18代入方程y=22x,得y=4. 能代入原方程组中
4、的方程来求y吗?代入哪个方程更简便? 这样,二元一次方程组的解是 归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法(板书课题)可以采用观察与估算的方法但很麻烦,故引发学生产生寻找新方法的需求 以退为进的思想 重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据体会未知向已知,陌生向熟悉转化这一重要思想化归思想巩固新知例1 用代入法解方程组本题较简单,直接由学生板演,师生共同评价 解:把代入,得 3(y3)-8y14 所以y=1 把y=1代人,得x=2. 所以 解后反思教师引导学生思考下列问题: (1)选择哪个方程代人
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代入 消元法解 二元 一次 方程组
限制150内