高中数学函数解题技巧方法总结(共24页).doc
《高中数学函数解题技巧方法总结(共24页).doc》由会员分享,可在线阅读,更多相关《高中数学函数解题技巧方法总结(共24页).doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)2. 求函数的定义域有哪些常见类型? 函数定义域求法:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 l 反三角函数的定义域函数yarcsinx的定义域是 1, 1 ,值域是,函数yarccosx的定义域是 1, 1 ,值域是 0, ,函数yarctgx的定义域是 R ,值域是.,函数y
2、arcctgx的定义域是 R ,值域是 (0, ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。3. 如何求复合函数的定义域? 义域是_。 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为4、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x-1,2的值
3、域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y=(2x10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数
4、解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上,例求函数y=+的值域。解:原函数可化简得:y=x-2+x+8 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=x-2+x+8=AB=10当点P在线段AB的延长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域
5、为:10,+)例求函数y=+ 的值域解:原函数可变形为:y=+ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y=AB=,故所求函数的值域为,+)。注:求两距离之和时,要将函数 9 、不等式法利用基本不等式a+b2,a+b+c3(a,b,c),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:10.倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例 求函数y=的值域多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、
6、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。5. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂 6. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (反解x;互换x、y;注明定义域) 在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:(2004.全国理)函数的反函数是( B )Ay=x22x+2(x1)By=
7、x22x+2(x1)Cy=x22x (x=1. 排除选项C,D.现在看值域。原函数至于为y=1,则反函数定义域为x=1, 答案为B.我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢?7. 反函数的性质有哪些? 反函数性质:1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)2、 反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)3、 反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称 互为反函数的图象关于直线yx对称; 保存了原来函数的单调性、奇函数性; 由反函数的性质,可以快速的解出很多比较麻
8、烦的题目,如(04. 上海春季高考)已知函数,则方程的解_.8 . 如何用定义证明函数的单调性? (取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求的正负号或者与1的关系(2)参照图象:若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性; (特例:奇函数)若函数f(x)的图象关于直线xa对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单调函数的性质:函数f(x)与f(x)c(c是常数)是同向变化的函数f(x
9、)与cf(x)(c是常数),当c0时,它们是同向变化的;当c0时,它们是反向变化的。如果函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;(函数相加)如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)函数f(x)与在f(x)的同号区间里反向变化。若函数u(x),x,与函数yF(u),u(),()或u(),()同向变化,则在,上复合函数yF(x)是递增的;若函数u(x),x,与函数yF(u),u(),()或u(),()反向变化,则在,上
10、复合函数yF(x)是递减的。(同增异减)若函数yf(x)是严格单调的,则其反函数xf1(y)也是严格单调的,而且,它们的增减性相同。f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x) 都是正数增增增增增增减减/减增减/减减增减减 )9. 如何利用导数判断函数的单调性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值为3)10. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。 11.判断函数奇偶性的方法一、 定义域
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 函数 解题 技巧 方法 总结 24
限制150内