上海市浦东新区建平中学2018-2019学年高一下期末数学试题(共19页).docx
《上海市浦东新区建平中学2018-2019学年高一下期末数学试题(共19页).docx》由会员分享,可在线阅读,更多相关《上海市浦东新区建平中学2018-2019学年高一下期末数学试题(共19页).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上绝密启用前上海市浦东新区建平中学20182019学年高一下期末数学试题试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1已知基本单位向量,则的值为()A1B5C7D252在学习等差数列时,我们由,得到等差数列的通项公式是,象这样由特殊到一般的推理方法叫做()A不完全归纳法B数学归纳法C综合法D分析法3设为数列的前项和,则的值为( )ABCD不确定4小金同学在学校中贯彻着“边玩边学”的学风,他在“
2、汉诺塔”的游戏中发现了数列递推的奥妙:有、三个木桩,木桩上套有编号分别为、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为( )ABCD第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题5和的等差中项为_6已知,若,则实数的值为_7设函数,则的值为_8已知数列为等比数列,则数列的公比为_9已知,则的值为_10已知无穷等比数列的首项为,公比为,则其各项的和为_11_12已知,若方程的解集为,则_13在锐角中,角、所对的边为、,若的面积为,且,则的
3、弧度为_14数列满足,设为数列的前项和,则_15设为数列的前项和,若,则数列的通项公式为_16已知等比数列、满足,则的取值范围为_评卷人得分三、解答题17已知点是重心,.(1)用和表示;(2)用和表示.18已知函数,.(1)求函数的最小正周期;(2)求函数的最小值和取得最小值时的取值.19“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说除了我”麦田里的守望者中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(
4、1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.20已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,其中为常数,求的值.21无穷数列满足:为正整数,且对任意正整数,为前项、中等于的项的个数.(1)若,求和的值;(2)已知命题 存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.专心-专注-专业参考答案1B【解析】【分析】计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,故选:B.
5、【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.2A【解析】【分析】根据题干中的推理由特殊到一般的推理属于归纳推理,但又不是数学归纳法,从而可得出结果.【详解】本题由前三项的规律猜想出一般项的特点属于归纳法,但本题并不是数学归纳法,因此,本题中的推理方法是不完全归纳法,故选:A.【点睛】本题考查归纳法的特点,判断时要区别数学归纳法与不完全归纳法,考查对概念的理解,属于基础题.3C【解析】【分析】令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,得;当时
6、,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.4B【解析】【分析】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在
7、将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,易知.设,得,对比得,且,所以,数列是以为首项,以为公比的等比数列,因此,故选:B.【点睛】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.5【解析】【分析】设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.6【解析】【分析】利用共线向量等价条件列等式求出实数的值.【详解】,且,因此,故答案为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 浦东新区 建平 中学 2018 2019 学年 一下 期末 数学试题 19
限制150内