高中数学三角函数的教学设计(共11页).docx
《高中数学三角函数的教学设计(共11页).docx》由会员分享,可在线阅读,更多相关《高中数学三角函数的教学设计(共11页).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上附件:教学设计模板教学设计课题名称:三角函数的诱导公式姓名:工作单位:学科年级:高一年级教材版本:人教版一、课程标准要求数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境提出数学问题尝试解决问题验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。二、教材地位作用(用知识结构图说明)三角函数的诱导
2、公式是普通高中课程标准实验教科书数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.三、学情调查分析(学生对预备知识的掌握了解情况,学生
3、在新课的学习方法的掌握情况,如何设计预习)本节课的授课对象是本校高一(5)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学目标确定(从学段课程标准中找到要求,并具体化为本节课的具体要求,明晰(学生懂)、具体、可操作、可以依据练习测试题)重点及难点(说明本课题的重难点)(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角
4、恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力; (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观1.教学重点 理解并掌握诱导公式. 2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.五、教学流程设计(用流程框架图说明,有环节字母表、学法说明)课堂脉络:温故知新问题引导特殊探路动画感知 自主探究归纳方法巩固反馈开放小结教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维
5、品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.学法 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题. 在本节课的教学过程中,本人引导学生的学法为思考问题 共同探
6、讨 解决问题 简单应用 重现探索过程 练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.六、教学过程 (一)创设问题情境师生活动:教师提问,学生思考、回答,学生口述的同时,教师加以引导并用幻灯片展示问题1:(1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切)(2)任意角的三角函数的定义是什么?(3)公式一的内容与作用是什么?问题2:已知如何求的值.教师引导:能否再把0360间的角的三角函数,化为我们熟悉的090间的角的三角函数问题呢?这节课我们就来学习和研究这样的问题. 【设计意图】通过复习旧知,为新知
7、识的学习打下基础.特别是各象限三角函数的符号,对于诱导公式记忆起关键作用.提出的新问题,引导学生进一步思考,激起学生们的兴趣.(二)探索开发新结论教师引导:为了解决以上问题,我们采用各个击破的方法.首先看,如果我们知道一个任意角与()三角函数值的关系,问题就解决了.探究一:任意角与()三角函数值的关系.问题3: ()角的终边关系如何?(互为反向延长线或关于原点对称) 与()角的终边分别交单位圆于点P1,P2,则点P1与P2位置关系如何?(关于原点对称) 点P1(x,y),那么点P2的坐标怎样表示?(P2(x,y)) sin与sin(),cos与cos(),tan与tan()的关系如何?经过探索
8、,归纳成公式-公式 二【设计意图】公式二的三个式子中,是第一个解决的问题,由于方法及思路都是未知的,所以采取教师引导,师生合作共同完成办法通过脚手架式的层层提问,引导学生自主推导诱导公式二,让学生体验证明猜想的乐趣,凸显学生学习的主体地位.同时,试图通过环环相扣的问题给学生传递“由宏观到微观考虑问题”的思维习惯,从而达到“授人以渔”的目的.后两个均由学生类比讨论完成学生活动:小组讨论,代表发言交流问题4:公式中的角仅是锐角吗?【设计意图】课前提问的问题是以引入的,之后的讨论只是用代数方法换成了一般形式的角,有些同学肯定会有这样的疑问,所以这个问题的解决好,就是突破难点的关键.引导学生互相讨论,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 三角函数 教学 设计 11
限制150内