高中数学专题讲义:导数及其应用(共50页).doc
《高中数学专题讲义:导数及其应用(共50页).doc》由会员分享,可在线阅读,更多相关《高中数学专题讲义:导数及其应用(共50页).doc(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学专题讲义:导数及其应用第1讲变化率与导数、导数的计算最新考纲1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数yC(C为常数),yx,yx2,yx3,y,y的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知 识 梳 理1.导数的概念(1)函数yf(x)在xx0处的导数一般地,函数yf(x)在xx0处的瞬时变化率是 ,我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx0,即f(x0).(2)函数f(x)的导函数如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数
2、值在(a,b)内构成一个新函数,这个函数f(x)为f(x)的导函数.2.导数的几何意义函数yf(x)在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0,f(x0)处的切线的斜率,过点P的切线方程为yy0f(x0)(xx0).3.基本初等函数的导数公式基本初等函数导函数f(x)C(C为常数)f(x)0f(x)x(Q*)f(x)x1f(x)sin xf(x)cos xf(x)cos xf(x)sin xf(x)exf(x)exf(x)ax(a0,a1)f(x)axln af(x)ln xf(x)f(x)logax(a0,且a1)f(x)4.导数的运算法则若f(x),g(x)存在,则有:(1
3、)f(x)g(x)f(x)g(x);(2)f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0).诊 断 自 测1.判断正误(在括号内打“”或“”)精彩PPT展示(1)f(x0)与(f(x0)表示的意义相同.()(2)求f(x0)时,可先求f(x0),再求f(x0).()(3)曲线的切线与曲线不一定只有一个公共点.()(4)若f(x)a32axx2,则f(x)3a22x.()解析(1)f(x0)表示函数f(x)的导数在x0处的值,而f(x0)表示函数值f(x0)的导数,其意义不同,(1)错.(2)求f(x0)时,应先求f(x),再代入求值,(2)错.(4)f(x)a32axx2
4、x22axa3,f(x)2x2a,(4)错.答案(1)(2)(3)(4)2.(选修11P75例1改编)有一机器人的运动方程为s(t)t2(t是时间,s是位移),则该机器人在时刻t2时的瞬时速度为()A. B. C. D.解析由题意知,机器人的速度方程为v(t)s(t)2t,故当t2时,机器人的瞬时速度为v(2)22.答案D3.(2016天津卷)已知函数f(x)(2x1)ex,f(x)为f(x)的导函数,则f(0)的值为_.解析因为f(x)(2x1)ex,所以f(x)2ex(2x1)ex(2x3)ex,所以f(0)3e03.答案34.(2017豫北名校期末联考)曲线y5ex3在点(0,2)处的切
5、线方程为_.解析y5ex,所求曲线的切线斜率ky|x05e05,切线方程为y(2)5(x0),即5xy20.答案5xy205.(2015全国卷)已知函数f(x)ax3x1的图象在点(1,f(1)处的切线过点(2,7),则a_.解析由题意可得f(x)3ax21,则f(1)3a1,又f(1)a2,切线方程为y(a2)(3a1)(x1).切线过点(2,7),7(a2)3a1,解得a1.答案1考点一导数的计算【例1】 求下列函数的导数:(1)yexln x;(2)yx;(3)yxsincos;(4)y.解(1)y(ex)ln xex(ln x)exln xexex.(2)因为yx31,所以y(x3)(
6、1)3x2.(3)因为yxsin x,所以yx1cos x.(4)y.规律方法(1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【训练1】 (1)f(x)x(2 017ln x),若f(x0)2 018,则x0等于()A.e2 B.1C.ln 2 D.e(2)(2015天津卷)已知函数f(x)axln x,x(0,),其中a为实数,f(x)为f(x)的导函数.若f(1)3,则a的值为_.解析(1)f(x)2 017ln xx2
7、018ln x.由f(x0)2 018,得ln x00,则x01.(2)f(x)aa(1ln x).由于f(1)a(1ln 1)a,又f(1)3,所以a3.答案(1)B(2)3考点二导数的几何意义(多维探究)命题角度一求切线方程【例21】 (1)(2016全国卷)已知f(x)为偶函数,当x0时,f(x)ex1x,则曲线yf(x)在点(1,2)处的切线方程是_.(2)(2017威海质检)已知函数f(x)xln x,若直线l过点(0,1),并且与曲线yf(x)相切,则直线l的方程为()A.xy10 B.xy10C.xy10 D.xy10解析(1)设x0,则x0时,f(x)ex1x.因此,当x0时,
8、f(x)ex11,f(1)e012.则曲线yf(x)在点(1,2)处的切线的斜率为f(1)2,所以切线方程为y22(x1),即2xy0.(2)点(0,1)不在曲线f(x)xln x上,设切点为(x0,y0).又f(x)1ln x,解得x01,y00.切点为(1,0),f(1)1ln 11.直线l的方程为yx1,即xy10.答案(1)2xy0(2)B命题角度二求切点坐标【例22】 (2017西安调研)设曲线yex在点(0,1)处的切线与曲线y(x0)上点P处的切线垂直,则P的坐标为_.解析由yex,知曲线yex在点(0,1)处的切线斜率k1e01.设P(m,n),又y(x0)的导数y,曲线y(x
9、0)在点P处的切线斜率k2.依题意k1k21,所以m1,从而n1.则点P的坐标为(1,1).答案(1,1)命题角度三求与切线有关的参数值(或范围)【例23】 已知直线yxb与曲线yxln x相切,则b的值为()A.2 B.1 C. D.1解析设切点坐标为P(x0,y0),由yxln x,得y.y|xx0,依题意,x01,则P,又切点P在直线yxb上,故b,得b1.答案B规律方法(1)导数f(x0)的几何意义就是函数yf(x)在点P(x0,y0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.(2)“曲线在点P处的切线”是以点P为切点,“曲线过点P的切线”则点P不一
10、定是切点,此时应先设出切点坐标.(3)当曲线yf(x)在点(x0,f(x0)处的切线垂直于x轴时,函数在该点处的导数不存在,切线方程是xx0.【训练2】 (1)若曲线yxln x上点P处的切线平行于直线2xy10,则点P的坐标是_.(2)函数f(x)ln xax的图象存在与直线2xy0平行的切线,则实数a的取值范围是_.解析(1)由题意得yln xx1ln x,直线2xy10的斜率为2.设P(m,n),则1ln m2,解得me,所以neln ee,即点P的坐标为(e,e).(2)函数f(x)ln xax的图象存在与直线2xy0平行的切线,即f(x)2在(0,)上有解,而f(x)a,即a在(0,
11、)上有解,a2,因为a0,所以22,所以a的取值范围是(,2).答案(1)(e,e)(2)(,2)思想方法1.f(x0)代表函数f(x)在xx0处的导数值;(f(x0)是函数值f(x0)的导数,而函数值f(x0)是一个常数,其导数一定为0,即(f(x0)0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意交换的等价性.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.易错防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.曲线yf(x)“在点P(x0,y0)处的切线”与“过
12、点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.3.对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.基础巩固题组(建议用时:40分钟)一、选择题1.设yx2ex,则y()A.x2ex2x B.2xexC.(2xx2)ex D.(xx2)ex解析y2xexx2ex(2xx2)ex.答案C2.已知函数f(x)的导函数为f(x),且满足f(x)2xf(1)ln x,则f(1)等于()A.e B.1C.1 D.e解析由f(x)2xf(1)ln x,得f(x)2f(1),f(1)2f(1)1,则f(1)1.答案B3.曲线ysin xe
13、x在点(0,1)处的切线方程是()A.x3y30 B.x2y20C.2xy10 D.3xy10解析ycos xex,故切线斜率为k2,切线方程为y2x1,即2xy10.答案C4.(2017成都诊断)已知曲线yln x的切线过原点,则此切线的斜率为()A.e B.e C. D.解析yln x的定义域为(0,),且y,设切点为(x0,ln x0),则y|xx0,切线方程为yln x0(xx0),因为切线过点(0,0),所以ln x01,解得x0e,故此切线的斜率为.答案C5.(2017昆明诊断)设曲线y在点处的切线与直线xay10平行,则实数a等于()A.1 B.C.2 D.2解析y,y|x1.由
14、条件知1,a1.答案A二、填空题6.若曲线yax2ln x在点(1,a)处的切线平行于x轴,则a_.解析因为y2ax,所以y|x12a1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a10,解得a.答案7.(2017长沙一中月考)如图,yf(x)是可导函数,直线l:ykx2是曲线yf(x)在x3处的切线,令g(x)xf(x),其中g(x)是g(x)的导函数,则g(3)_.解析由图形可知:f(3)1,f(3),g(x)f(x)xf(x),g(3)f(3)3f(3)110.答案08.(2015全国卷)已知曲线yxln x在点(1,1)处的切线与曲线yax2(a2)x1相切,则a_.
15、解析由yxln x,得y1,得曲线在点(1,1)处的切线的斜率为ky|x12,所以切线方程为y12(x1),即y2x1.又该切线与yax2(a2)x1相切,消去y,得ax2ax20,a0且a28a0,解得a8.答案8三、解答题9.已知点M是曲线yx32x23x1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l的倾斜角的取值范围.解(1)yx24x3(x2)211,所以当x2时,y1,y,所以斜率最小的切线过点,斜率k1,所以切线方程为xy0.(2)由(1)得k1,所以tan 1,所以.10.已知曲线yx3x2在点P0处的切线l1平行于直线4xy10,且点P0在第三象
16、限.(1)求P0的坐标;(2)若直线ll1,且l也过切点P0,求直线l的方程.解(1)由yx3x2,得y3x21,由已知令3x214,解之得x1.当x1时,y0;当x1时,y4.又点P0在第三象限,切点P0的坐标为(1,4).(2)直线ll1,l1的斜率为4,直线l的斜率为.l过切点P0,点P0的坐标为(1,4),直线l的方程为y4(x1),即x4y170.能力提升题组(建议用时:20分钟)11.(2016山东卷)若函数yf(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称yf(x)具有T性质,下列函数中具有T性质的是()A.ysin x B.yln xC.yex D.yx3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 专题 讲义 导数 及其 应用 50
限制150内