余弦定理教学设计(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《余弦定理教学设计(共5页).doc》由会员分享,可在线阅读,更多相关《余弦定理教学设计(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上人教版数学必修5 1.1.2余弦定理的教学设计一、 教学目标解析1、使学生掌握余弦定理及推论,并会初步运用余弦定理及推论解三角形。2、通过对三角形边角关系的探究,能证明余弦定理,了解从三角方法、解析方法、向量方法和正弦定理等途径证明余弦定理。3、在发现和证明余弦定理中,通过联想、类比、转化等思想方法比较证明余弦定理的不同方法,从而培养学生的发散思维。4、能用余弦定理解决生活中的实际问题,可以培养学生学习数学的兴趣,使学生进一步认识到数学是有用的。二、 教学问题诊断分析1、通过前一节正弦定理的学习,学生已能解决这样两类解三角形的问题:已知三角形的任意两个角与边,求其他两
2、边和另一角;已知三角形的任意两个角与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。而在已知三角形两边和它们的夹角,计算出另一边和另两个角的问题上,学生产生了认知冲突,这就迫切需要他们掌握三角形边角关系的另一种定量关系。所以,教学的重点应放在余弦定理的发现和证明上。2、在以往的教学中存在学生认知比较单一,对余弦定理的证明方法思考也比较单一,而本节的教学难点就在于余弦定理的证明。如何启发、引导学生经过联想、类比、转化多角度地对余弦定理进行证明,从而突破这一难点。3、学习了正弦定理和余弦定理,学生在解三角形中,如何适当地选择定理以达到更有效地解题,也是本节内容应该关注的问题,特别是求某一
3、个角有时既可以用余弦定理,也可以用正弦定理时,教学中应注意让学生能理解两种方法的利弊之处,从而更有效地解题。三、 教学支持条件分析为了将学生从繁琐的计算中解脱出来,将精力放在对定理的证明和运用上,所以本节中复杂的计算借助计算器来完成。当使用计算器时,约定当计算器所得的三角函数值是准确数时用等号,当取其近似值时,相应的运算采用约等号。但一般的代数运算结果按通常的运算规则,是近似值时用约等号。四、 教学过程设计1、教学基本流程:从一道生活中的实际问题的解决引入问题,如何用已知的两条边及其所夹的角来表示第三条边。余弦定理的证明:启发学生从不同的角度得到余弦定理的证明,或引导学生自己探索获得定理的证明
4、。应用余弦定理解斜三角形。2、教学情景:创设情境,提出问题问题1:现有卷尺和测角仪两种工具,请你设计合理的方案,来测量学校生物岛边界上两点的最大距离(如图1所示,图中AB的长度)。【设计意图】:来源于生活中的问题能激发学生的学习兴趣,提高学习积极性。让学生进一步体会到数学来源于生活,数学服务于生活。师生活动:教师可以采取小组合作的形式,让学生设计方案尝试解决。学生1方案1:如果卷尺足够长的话,可以在岛对岸小路上取一点C(如图2),用卷尺量出AC和BC的长,用测角仪测出ACB的大小,那么ABC的大小就可以确定了。感觉似乎在ABC中已知AC、BC的长及夹角C的大小,可以求AB的长了。其他学生有异议
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 余弦 定理 教学 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内