不错-排列组合问题之全错位排列问题(共3页).doc
《不错-排列组合问题之全错位排列问题(共3页).doc》由会员分享,可在线阅读,更多相关《不错-排列组合问题之全错位排列问题(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 排列组合问题之全错位排列问题 (一个通项公式和两个递推关系)一、问题引入: 问题、名同学各写一张贺卡,先集中起来,然后每人从中拿出一张别人写的贺卡,则四张贺卡的不同分配方式共有多少种? 问题、将编号为,的四个小球分别放入编号为,的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同,则共有多少种不同的放法? 这两个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把这种限制条件的排列问题叫做全错位排列问题。 问题、五位同学坐在一排,现让五位同学重新坐,至多有两位同学坐自己原来的位置,则不同的坐法有多少种? 解析:可以分类解决:第一类,所有同
2、学都不坐自己原来的位置; 第二类,恰有一位同学坐自己原来的位置; 第三类,恰有两位同学坐自己原来的位置。 对于第一类,就是全错位排列问题;对于第二、第三类有部分元素还占有原来的位置,其余元素可以归结为全错位排列问题,我们称这种排列问题为部分错位排列问题。 设个元素全错位排列的排列数为,则对于问题,第一类全错位排列的排列数为;第二类先确定一个排原来位置的同学有种可能,其余四个同学全错位排列,所以第二类的排列数为;第三类先确定两个排原位的同学,有种可能,其余三个同学全错位排列,所以第三类的排列数为,因此问题的答案为:。由于生活中很多这样的问题,所以我们有必要探索一下关于全错位排列问题的解决方法。二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不错 排列组合 问题 错位 排列
限制150内