二次函数的图像与性质讲义(共5页).doc
《二次函数的图像与性质讲义(共5页).doc》由会员分享,可在线阅读,更多相关《二次函数的图像与性质讲义(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上龙文教育学科教师辅导讲义课 题二次函数的图象与性质教学目标1. 通过实例引出二次函数的概念;2. 借助图像归纳二次函数的性质并加以直观描述;3. 学会数形结合的方法解决数学问题教学重点二次函数的图象与性质教学难点灵活运用二次函数的图像与性质解决问题教学内容知识点归纳:1、求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是
2、顶点.2、二次函数的图象及性质: (1)二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大 (2)二次函数的图象是一条对称轴平行y轴或者与y轴重合的抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y随x的增大而增大 (3)当a0时,当x=时,函数有最小值;当a0时,当x =时,函数有最大值3、图象的平移:将二次函数y=ax2
3、(a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0)平移|k|个单位,即可得到y=a(xh)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同记住规律:左
4、加右减,上加下减4、 用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:典型例题:例1、二次函数y=ax2bx2c的图象如图所示,则a 0,b 0,c 0(填“”或“”)例2、二次函数y=ax2bxc与一次函数y=axc在同一坐标系中的图象大致是图中的( )例3、在同一坐标系中,函数y=ax2bx与y=的图象大致是图中的( )例4、如图所示的是桥梁的两条钢缆具有相同的抛物线形状按照图中建立的直角坐标系,左面的一条抛物线可以用y=00225
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 图像 性质 讲义
限制150内