全等三角形之旋转与截长补短专题(共8页).doc
《全等三角形之旋转与截长补短专题(共8页).doc》由会员分享,可在线阅读,更多相关《全等三角形之旋转与截长补短专题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三角形全等问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件)问题二:旋转都有哪些模型?【例1】如图,P是正ABC内的一点,若将PBC绕点B旋转到PBA ,则PBP的度数是( ) A45B60 C90 D120 【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BDCF并求出DOH的度数。【例3】如图,正方形ABCD中,FADFAE 。求证:BEDFAE。1题干中出现对图形的旋转现成的全等2图形中隐藏着旋转位置关系的全等形找到并利用3题干中没提到旋转,图形中也没有旋转关系存在通过作辅助线构造旋转!【例4】已知:如图:正方形ABCD
2、中,MAN45,MAN的两边分别交CB、DC于点M、N。求证:BMDNMN。【例5】如图,正方形ABCD中,EAF45,连接对角线BD交AE于M,交AF于N,证明:DN2BM2MN2 【例6】如图,已知OAB和OCD是等边三角形,连结AC和BD,相交于点E,AC和BO交于点F,连结BC。求AEB的大小。 【例7】如图所示:ABC中,ACB90,ACBC,P是ABC内的一点,且AP3,CP2, BP1,求BPC的度数。本课总结问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件) 1图中有相等的边(等腰三角形、等边三角形、正方形、正多边形) 2这些相等的边中存在共端点。3如果旋转(将一
3、条边和另一条边重合),会出现特殊的角:大角夹半角、手拉手、被分割的特殊角。问题二:旋转都有哪些模型?构造旋转辅助线模型:1大角夹半角2手拉手(寻找旋转) 3被分割的特殊角在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。1如图,P是正内的一点,且BP是ABC的角平分线,若将绕点P旋转到,则的度数是( )A45B60C90D120 2如图:ABC中,ABAC,BC为最大边,点D、E分别在BC、AC上,BDCE,F为BA延长线上一点,BFCD,则下列正确的是( )ADFDE BDCDFCECEAD不确定3如图,四边形ABCD中,ABC30,ADC60,ADDC,则下列正确的是( )ABD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 旋转 截长补短 专题
限制150内