《排列组合解题技巧和方法(共6页).doc》由会员分享,可在线阅读,更多相关《排列组合解题技巧和方法(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上运用两个基本原理例1n个人参加某项资格考试,能否通过,有多少种可能的结果?例2同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有( ) (A)6种 (B)9种 (C)11种 (D)23种解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。特殊元素(位置)的“优先安排法”: 特殊优先,一般在后 例1 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。A 24个 B.30个 C.40个 D.60个例2 1名老师和4名获奖学生排成一排照像
2、留念,若老师不排在两端,则共有不同的排法( )种例3乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有( )种.例48人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?相邻问题用捆绑法:例5 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有()ABCD例6 四对兄妹站一排,每对兄妹都相邻的站法有多少种?例7有8本不同的书;其中数学书3本,外语书2本,其它学科书3本若将这
3、些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种例87名学生站成一排,甲、乙必须站在一起有多少不同排法?例98人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?例10 5个男生3个女生排成一列,要求女生排一起,共有几种排法?不相邻问题用“插空法”:例11用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个例124男4女站成一行,男女相间的站法有多少种?例13排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?例14 5个男生
4、3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?例15马路上有编号为1、2、3、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种?六顺序固定用“除法”:例166个人排队,甲、乙、丙三人按“甲-乙-丙”顺序排的排队方法有多少种?例174个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。元素定序,先排后除或选位不排或先定后插例185人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况?练习6 要编制一张演出节目单,6个舞蹈节目已排定顺序,要插入5个歌唱节目,则共有几种插入
5、方法?七分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。例197个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?八逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。例20. 将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )A6 B.9 C.11 D.23九、构造模型 “隔板法”对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。例21方程a+b+c+d=12有多少组正整数解?例把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得
6、的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况? 例2220个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法? 相同元素进盒,用档板分隔例2310张参观公园的门票分给5个班,每班至少1张,有几种选法?练习9 从全校10个班中选12人组成排球队,每班至少一人,有多少种选法?十.正难则反排除法对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法例24从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电
7、视机各一台,则不同的取法共有( )种 A140种 B80种 C70种 D35种例25求以一个长方体的顶点为顶点的四面体的个数。例26100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法?例278个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法?十二一一对应法:例29. 在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?十三、多元问题分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。例30某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那
8、么不同插法的种数为(A )A42 B30 C20 D12例31如图, 一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 多类元素组合,分类取出例32 车间有11名工人,其中4名车工,5名钳工,AB二人能兼做车钳工。今需调4名车工和4名钳工完成某一任务,问有多少种不同调法?十四、混合问题先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略例33 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( ) A 种 B 种 C 种 D 种例34从黄瓜、白菜、油菜、扁
9、豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 ( )A24种 B18种 C12种 D6种分组分配问题:例18名同学,(1)平均分成三组,有_种分法.(2)平均分给数、理、 化小 组有_种分法.(3)分配给化学小组7人,物理小组6人,数学小组5人,有 _种分法.(4)分给数、理、化小组,其中一个组为5人,一个组为6人, 一 个组为7人,有_种分法.用多种方法解1.某班上午要上语文、数学、体育和英语,又体育教师因故不能上第一节和第四节, 则不同的排课方案有_种.2.从5位女同学,6位男同学中选出3位女同学和2位男同学担任五种不同的职务, 有_种选法.
10、3.从甲、乙,.,等6人中选出4名代表,那么 (1)甲一定当选,共有_种选法.(2)甲一定不入选,共有_种选法. (3)甲、乙二人至少有一人当选,共有_种选法.4.将5本不同的数学书,4本不同的物理,3本不同的化学书排成一排, (1)各类书必须排成一起,问有_种排法. (2)化学书不全排在一起,问有_种排法. (3)化学书每两本都不相邻,问有_种排法.5.有男女售票员各4人,被分配在四辆公共汽车上,要求每辆车上男、女各1人,则有 _种分法.6.四个男孩和三个女孩站成一列,男孩甲前面至少有一个女孩站着,并且站在这个男 孩前面的女孩个数必少于站在他后面的男孩的个数,则有_ 种站法.排列组合1 1某
11、段街道旁边规划树立10块广告牌,广告底色选用红、绿两种颜色,则相邻两块广告底色不同为绿色的配色方案的种数为()A72B78C143D1562在如图所示的10块地上选出6块种植A1、A2、A6等六个不同品种的蔬菜,每块种植一种不同品种蔬菜,若A1、A2、A3必须横向相邻种在一起,A4、A5横向、纵向都不能相邻种在一起,则不同的种植方案有()A3120B3360C5160D55203四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有 种(用数字作答)4从集合O,P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任取2个元素排成一排(字母和数字均不能重复)每排中字母
12、O,Q和数字0至多只能出现一个的不同排法种数是(用数字作答)5从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有 个(用数字作答)6安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是(用数字作答)7安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日不同的安排方法共有 种(用数字作答)85名乒乓球队员中,有2名老队员和3名新队员现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有种(以数作答)9某校从
13、8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种10某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种11从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有种12用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个(用数字作答)13安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有种(用数字作答)14如图,用6种不同的颜色给图中的4个格子涂色,每个
14、格子涂一种颜色要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答)15要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为(以数字作答)16某书店有11种杂志,2元1本的8种,1元1本的3种小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答)17某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答)18某
15、地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有种(用数字作答)1910个相同的小球分给3个人,每人至少2个,有种分法207名志愿者中安排6人在周六、周日两天参加社区公益活动若每天安排3人,则不同的安排方案共有种(用数字作答)21将4个相同的红球,5个相同的白球,6个相同的黑球放入到4个不同的盒子里,每个盒子中小球的颜色齐全,则不同的放法共有种(用数字作答)22某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种(用数字作
16、答)23将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中球数不能少于2个,那么所有不同的放法的种数为24将5名上海世博会的志愿者分配到中国馆、美国馆、英国馆工作,要求每个国家馆至少分配一名志愿者且其中甲、乙两名志愿者不同时在同一个国家馆工作,则不同的分配方案有种25将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l,2,8则红球的编号之和小于黑球编号之和的排法有种26有A、B、C、D、E五名学生参加网页设计竞赛,决出了第一到第五的名次,A、B两位同学去问成绩,教师对A说:“你没能得第一名”又对B说:“你得了第三名”从
17、这个问题分析,这五人的名次排列共有种可能(用数字作答)27从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答)28将数字1,2,3,4,5,6拼成一列,记第i个数为ai(i=1,2,6),若a11,a33,a55,a1a3a5,则不同的排列方法有 种(用数字作答)29中国从5名外交官中选派4人去日本、韩国、菲律宾参加公益活动,每人只去一个国家,要求去日本两人参加,去韩国一人参加,去菲律宾一人参加,则不同的选派方法共有(用数字作答)30(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花求恰有两个区域用红色鲜花的概率;参考答案1C;2C;3144;48424;536;678;72400;848;91320;10600;11100;12576;1360;14390;15288;16266;17216;1896;1915;20140;2140;2230;2318;24114;2531;2618;27590;2830;2960;专心-专注-专业
限制150内