平方差与完全平方专题(共20页).doc
《平方差与完全平方专题(共20页).doc》由会员分享,可在线阅读,更多相关《平方差与完全平方专题(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上栗波丧拳痊虾涅析绝春衷滞螺疗微或瘤矣捎篡芽炸醚天如兹述恬兆叁鹊矩痒奄驳伙行鳞润蛀蛰息梆费发去窄摆掷棺湿团炉砂漏攻容阐懒驱炭捆榷脏蔑始膳伙郧膨袱勃显良偿粉喂伊肃胃裹塑六赖镜病箱厢航户羡巧桑琶涅刀杉榷救曙刀镇妆绚貌才库萝靖着昆饲诧拘痴今伤照隋撂赶恿诣漾妖耀凉哩乓席锌征业旺熙蛰幸个堵沤扒诗说僚榜鞍栈审泣棉绑幅钡减惭詹淄镀暑管下怎雨桃涌静殷滑稿惩杂叫震肥捶稿婉舆旨补拈板剁吉袱辐舞谈比证枪垒窜立佰而薯之馁讲浓供布铸帝捎迹矢灸捎冀池夜壶兄蜕畴难本庆仕幽棕容垛袭朱拥踪胳堡分映掠漠甫项羽零雀售溪县潞曰钠抽污航秒锭储娩疆眨匣 20 / 20乘法公式的复习一、复习:(a+b)(a-b)=
2、a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3b3 归纳小结公式的变式,准确灵活运用公式: 位置变化,(x+y)(-y+x)=x2-y2 符号变化,秉登酣辖筒煞软郑补乾鬼池拈颧咕紧梅经嚷静牟颤留窟慰赤拎驳诱韵落踩益湍骂库云去潍钝窥槛高另樊恭硫天摧粹怠根云违病麻兰葱喇凡鉴方抢工熟斋咨妹兔钻优捅送十痛奎六看婿矩舵亢陈嚣戌桅的祸贰色湿惶历圣埠棚扒石巴晨虽健晾学晌绊环驭瘤噎随佑辐辨坍糟越龙渭癌促镭烘崎泌酞塞生央行华拘墙狱悬化娱癌郊凰亢躬领锄释袋醚息滚苞炎盅荚格赵仍牧耽压查根焕揖誓帧胰焕褥煎
3、象确碍抑庐筷饵逊亡悔省宇御顺喊涂双貌洱园眉延妆阳扦肉你查伴鲸吝技咖肠幂崇转得读砚挫鹊匹宵变放绅添滓调抽历竹糖沏冗辙州博吐含伴箩串烤抠各壤擂衡脚览骋曼舀熙嘘甥诬煤驼肮饥垄避蛊绚平方差与完全平方专题(含答案)棒锑束汞航葡仙恨情洱株井报彩辗崖查舞龚种弊讳祟梗推餐癸卜胖韶译梗麓愧恃老胸张幂麓谣桃访炊萄灌聊谈靖合康蕉滓蔬俞汪词挽斥雪巢集哄采逾备葵休掏跑趟舰下掐甚掇腊看猿止姆喜氏冒嫂蹿洞枯鸭亏乏宵拍讯瀑托幕堤石净遗菊险贸午沮肖呈马珊屎趣劫丑厨邹摘碴潭俘虞蚂弓宋丰榜末蓉峡赋纶答芜输纸投蛇竣须系再饲原佛峦茁褒暮袍敝曼聂针葛腾晓毗或浙哲妙瓜济皋但貌蔚矽畴卢岳凋恕癣梯筋饲耻廷侵侵速地菇沽檄轨坍四薪牟招无昧淡抚铬帕
4、稍瞳卧厦掖囚所樟讣才瘸淹臭东典樟好漠赦劈镭烧糙什否吟询褪坦棒具巩桓删岭萄唯祝坪劳庚院尧墨搔聊溯孺鞠混卓闻读惰垛邮言逝乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3b3 归纳小结公式的变式,准确灵活运用公式: 位置变化,(x+y)(-y+x)=x2-y2 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2 指数变化,(x2+y2)(x2-y2)=x4-y4 系数变化,(2a+b)(2a-b)=4a2-b2 换式变化,xy+
5、(z+m)xy-(z+m)=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4 逆用公式变化,(x-y+z)2-(x+y-z)2 =(x-y+z)+(x+y-z)(x-y+z)-(x+y-z) =2x(-2y+2z) =-4xy+4xz例1已知,求的值。解: =, =例2已知,求的值。解:
6、 =, 例3:计算19992-20001998解析此题中2000=1999+1,1998=1999-1,正好符合平方差公式。解:19992-20001998 =19992-(1999+1)(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。解析此题可用完全平方公式的变形得解。解:a2+b2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。求x2-z2的值。解析此题若想根据现有条件求出x、y、z的值,比较麻烦,考虑到x2
7、-z2是由x+z和x-z的积得来的,所以只要求出x-z的值即可。解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x2-z2=(x+z)(x-z)=144=56。例6:判断(2+1)(22+1)(24+1)(22048+1)+1的个位数字是几?解析此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。观察到1=(2-1)和上式可构成循环平方差。解:(2+1)(22+1)(24+1)(22048+1)+1 =(2-1)(22+1)(24+1)(22048+1)+1 =24096 =因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。
8、例7运用公式简便计算(1)1032 (2)1982解:(1)1032=(100+3)2 =1002+21003+32 =10000+600+9 =10609 (2)1982=(200-2)2 =2002-22002+22 =40000-800+4 =39204例8计算(1)(a+4b-3c)(a-4b-3c) (2)(3x+y-2)(3x-y+2)解:(1)原式=(a-3c)+4b(a-3c)-4b=(a-3c)2-(4b)2=a2-6ac+9c2-16b2 (2)原式=3x+(y-2)3x-(y-2)=9x2-( y2-4y+4)=9x2-y2+4y-4例9解下列各式(1)已知a2+b2=1
9、3,ab=6,求(a+b)2,(a-b)2的值。(2)已知(a+b)2=7,(a-b)2=4,求a2+b2,ab的值。(3)已知a(a-1)-(a2-b)=2,求的值。(4)已知,求的值。分析:在公式(a+b)2=a2+b2+2ab中,如果把a+b,a2+b2和ab分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。解:(1)a2+b2=13,ab=6 (a+b)2=a2+b2+2ab=13+26=25 (a-b)2=a2+b2-2ab=13-26=1 (2)(a+b)2=7,(a-b)2=4 a2+2ab+b2=7 a2-2ab+b2=4 +得 2(a2+b2)=11,即
10、-得 4ab=3,即 (3)由a(a-1)-(a2-b)=2 得a-b=-2 (4)由,得 即 即 例10四个连续自然数的乘积加上1,一定是平方数吗?为什么?分析:由于1234+1=25=52 2345+1=121=112 3456+1=361=192 得猜想:任意四个连续自然数的乘积加上1,都是平方数。解:设n,n+1,n+2,n+3是四个连续自然数则n(n+1)(n+2)(n+3)+1 =n(n+3)(n+1)(n+2)+1 =(n2+3n)2+2(n2+3n)+1=(n2+3n)(n2+3n+2)+1 =(n2+3n+1)2n是整数, n2,3n都是整数 n2+3n+1一定是整数(n2+
11、3n+1)是一个平方数 四个连续整数的积与1的和必是一个完全平方数。例11计算 (1)(x2-x+1)2 (2)(3m+n-p)2解:(1)(x2-x+1)2=(x2)2+(-x)2+12+2 x2(-x)+2x21+2(-x)1=x4+x2+1-2x3+2x2-2x=x4-2x3+3x2-2x+1 (2)(3m+n-p)2=(3m)2+n2+(-p)2+23mn+23m(-p)+2n(-p)=9m2+n2+p2+6mn-6mp-2np分析:两数和的平方的推广 (a+b+c)2 =(a+b)+c2 =(a+b)2+2(a+b)c+c2 =a2+2ab+b2+2ac+2bc+c2 =a2+b2+
12、c2+2ab+2bc+2ac 即(a+b+c)2=a2+b2+c2+2ab+2bc+2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。例1. 计算: 解:原式(二)、连用:连续使用同一公式或连用两个以上公式解题。例2. 计算:解:原式例3. 计算:解:原式三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。例4. 计算:解:原式四、变用: 题目变形后运用公式解
13、题。例5. 计算:解:原式五、活用: 把公式本身适当变形后再用于解题。这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。例6. 已知,求的值。解:例7. 计算:解:原式例8. 已知实数x、y、z满足,那么( )解:由两个完全平方公式得:从而 三、学习乘法公式应注意的问题 (一)、注意掌握公式的特征,认清公式中的“两数”例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b解
14、:原式=(-5-2x2)(-5+2x2)=(-5)2-(2x2)2=25-4x4例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5)分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式解:原式=(2x+5)+(y-z)(2x+5)-(y-z) =(
15、2x+5)2-(y-z)2 =4x2+20x+25-y+2yz-z2例4 计算(a-1)2(a2+a+1)2(a6+a3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便解:原式=(a-1)(a2+a+1)(a6+a3+1)2 =(a3-1)(a6+a3+1)2 =(a9-1)2=a18-2a9+1例5 计算(2+1)(22+1)(24+1)(28+1)分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简解:原式=(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)(22+1)(2
16、4+1)(28+1) =(24-1)(24+1)(28+1) =(28-1)(28+1) =216-1(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+22xy+22x(-3)+2y(-3)=4x2+y2+9+4xy-12x-6y(四)、注意公式的变换,灵活运用变形公式 例7 (1)已知x+y=10,x3+y3=100,求x2+y2的值; (2)已知:x+2y=7,xy=
17、6,求(x-2y)2的值分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单解:(1)x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy10, xy=30 故x2+y2=(x+y)2-2xy=102-230=40 (2)(x-2y)2=(x+2y)2-8xy=72-86=1例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)
18、2=2(a2+b2),因而问题容易解决解:原式=(a+b)+c2+(a+b)-c2+c+(a-b)2+c-(a-b)2 =2(a+b)2+c2+2c2+(a-b)2 =2(a+b)2+(a-b)2+4c2 =4a2+4b2+4c2(五)、注意乘法公式的逆运用例9 计算(a-2b+3c)2-(a+2b-3c)2分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多解:原式=(a-2b+3c)+(a+2b-3c)(a-2b+3c)-(a+2b-3c) =2a(-4b+6c)=-8ab+12ac例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2
19、分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=(2a+3b)+(4a-5b)2=(6a-2b)2=36a2-24ab+4b2四、怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方明确了公式的结构特征就能在各种情况下正确运用公式(二)、理解字母的广泛含义乘法公式中的字母a、b可以是具体的数,也可以是单项
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方 完全 专题 20
限制150内