多元函数微分法及其应用习题及答案(共29页).doc
《多元函数微分法及其应用习题及答案(共29页).doc》由会员分享,可在线阅读,更多相关《多元函数微分法及其应用习题及答案(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第八章 多元函数微分法及其应用(A)1填空题(1)若在区域上的两个混合偏导数, ,则在上, 。(2)函数在点处可微的 条件是在点处的偏导数存在。(3)函数在点可微是在点处连续的 条件。2求下列函数的定义域(1);(2)3求下列各极限(1); (2); (3) 4设,求及。5求下列函数的偏导数(1);(2);(3)。6设,求全导数。7设,求。8曲线,在点(2,4,5)处的切线对于轴的倾角是多少?9求方程所确定的函数的偏导数。10设,求所有二阶偏导数。11设是由方程确定的隐函数,求,。12设,求。13设是由方程确定的隐函数,求,。14设,求全微分。15求函数在点的全微分。
2、16利用全微分求的近似值。17求抛物面与抛物柱面的交线上的点处的切线方程和平面方程。18求曲面上点处的切平面方程和法线方程。19求曲线,上点,使在该点处曲线的切线平行于平面。20求函数的极值。21求函数的极值。22要建造一个容积为10立方米的无盖长方体贮水池,底面材料单价每平方米20元,侧面材料单价每平方米8元。问应如何设计尺寸,方便材料造价最省? (B)1求下列函数的定义域(1);(2)2(1)设,求,。 (2)设,求3求下列函数的极限(1);(2) 4设,问是否存在?5讨论函数的连续性,其中。6二元函数在点处:连续,偏导数存在;连续,偏导数不存在;不连续,偏导数存在;不连续,偏导数不存在。
3、7设,求,。8设,求,。9设,求,。10设,可微,求。11设,求,。12设,求。13设可微,求全微分。14设是由方程所确定的隐函数,其中具有连续的偏导数,求,并由此求和。15求的偏导数。16设,求,。17设,求。18求函数在点处沿从点到点方向的方向导数。19求函数在点沿,在此 点的切线方向上的方向导数。20求函数在点处沿方向的方向导数。21判断题:(简单说明理由)(1)就是在处沿轴的方向导数。 (2)若在处的偏导数,存在,则沿任一方向的方向导数均存在。22证明曲面上任意一点的切平面在坐标轴上的截距的平方为常数。23证明:球面:上任意一点处的法线都经过球心。24求椭球面上的一点处的切平面与平面的
4、交角。25设,都是,的函数,的各偏导数都存在且连续,证明: 26问函数在处沿什么方向的方向导最大,并求此方向导数的最大值。27求内接于椭球面的最大长方体的体积。28某公司通过报纸和电视传媒做某种产品的促销广告,根据统计资料,销售收入与报纸广告费及电视广告费(单位:万元)之间的关系有如下经验公式:,在限定广告费为1.5万元的情况下,求相应的最优广告策略。29求函数的阶麦克劳林公式,并写出余项。30利用函数的2阶泰勒公式,计算的近似值。 (C)1证明。2设,其中在点,邻域内连续,问(1)在什么条件下,偏导数,存在;(2)在什么条件下,在处可微。3设而为由方程所决定的函数,且是可微的,试求。4设由确
5、定,求。5从方程组中求出,。6设,且,试确定常数,使函数能满足方程:。7证明:旋转曲面上任一点处的法线与旋转轴相交。8试证曲面()上任何点处的切平面在各坐标轴上的截距之和等于。9抛物面被平面截成一椭圆,求原点到这椭圆的最长与最短距离。10设轴正向到方向的转角为,求函数在点沿方向的方向导数,并分别确定转角,使这导数有(1)最大值;(2)最小值;(3)等于0。第八章 多元函数微分法及其应用(A)1填空题(1)若在区域上的两个混合偏导数, 连续 ,则在上, 。(2)函数在点处可微的 必要 条件是在点处的偏导数存在。 y O (0,1) x图1(3)函数在点可微是在点处连续的 充分 条件。2求下列函数
6、的定义域(1)解:设定义域为,由和,即,得,如图1所示(2)解:设定义域为,由,即,不同时为零,且,即 ,得。3求下列各极限(1) (2)解:原式 解:原式 (3) 解:原式 4设,求及解:,5求下列函数的偏导数(1)解: 类似地(2)解: 同理可证得:(3)解: 6设,求全导数。解:, , 依复合函数求导法则,全导数为 7设,求。解: 8曲线,在点(2,4,5)处的切线对于轴的倾角是多少?解:,故。9求方程所确定的函数的偏导数。解:关于求导,得到,即关于求导,有,即。10设,求所有二阶偏导数。解:先求一阶偏导数,得,再求二阶偏导数,得 , , , 11设是由方程确定的隐函数,求,。解一:记,
7、则 , 当时,便得, 。解二:(提示)直接对方程两边求偏导数,并明确是、的函数,即可得,。12设,求。解:令,则,则 。13设是由方程确定的隐函数,求,。解:方程两边对求偏导数,有 ,即 解得 类似地,方程两边对求偏导数,解得 再求二阶混合偏导数,得 把上述的结果代入,便得:。14设,求全微分。解:由于,所以全微分为 。15求函数在点的全微分。解:, 所以。16利用全微分求的近似值。解:设,则全微分 由近似关系,得 上式中取,得 因此,所求近似值。17求抛物面与抛物柱面的交线上的点处的切线方程和平面方程。解:交线方程,只要取作参数,得参数方程: 则有,于是交线在点处的切线向量为。切线向量为法平
8、面方程为,即。18求曲面上点处的切平面方程和法线方程。解:记,则,于是曲面在点处的法线向量为从而,切平面方程为,即,法线方程为。19求曲线,上点,使在该点处曲线的切线平行于平面。解:曲线在点处的切线方程为又切线与平面平行,即切线的方向向量和平面的法向量垂直,应有,即,得所以点的坐标为。20求函数的极值。解:解方程组,求得驻点,由于,所以在点处,函数取得极大值,极大值为。21求函数的极值。解:解方程组,得驻点。由于,在点处,所以函数在点处取得极小值,极小值为。22要建造一个容积为10立方米的无盖长方体贮水池,底面材料单价每平方米20元,侧面材料单价每平方米8元。问应如何设计尺寸,方便材料造价最省
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 微分 及其 应用 习题 答案 29
限制150内