物理学教程(第二版)上册课后答案(共13页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《物理学教程(第二版)上册课后答案(共13页).docx》由会员分享,可在线阅读,更多相关《物理学教程(第二版)上册课后答案(共13页).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第六章机 械 波6-1图(a)表示t 0 时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线则图(a)中所表示的x 0 处振动的初相位与图(b)所表示的振动的初相位分别为()题6-1 图() 均为零() 均为 () 均为() 与 () 与分析与解本题给了两个很相似的曲线图,但本质却完全不同求解本题要弄清振动图和波形图不同的物理意义图(a)描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为/2而图(b)是一个
2、质点的振动曲线图,该质点在t0 时位移为0,t 0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为/2,答案为(D)6-2 一横波以速度u沿x轴负方向传播,t时刻波形曲线如图(a)所示,则该时刻()(A)A点相位为 (B)B点静止不动(C)C点相位为 (D)D点向上运动分析与解 由波形曲线可知,波沿x轴负向传播,B、D处质点均向y轴负方向运动,且B处质点在运动速度最快的位置. 因此答案(B)和(D)不对. A处质点位于正最大位移处,C处质点位于平衡位置且向y轴正方向运动,它们的旋转矢量图如图(b)所示.A、C点的相位分别为0和.故答案为(C)题 6-2 图6-3如图所示
3、,两列波长为的相干波在点P 相遇波在点S1 振动的初相是1 ,点S1 到点P的距离是r1 波在点S2的初相是2 ,点S2 到点P 的距离是r2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为()分析与解P 是干涉极大的条件为两分振动的相位差,而两列波传到P 点时的两分振动相位差为,故选项(D)正确题6-3 图6-4在波长为的驻波中,两个相邻波腹之间的距离为()(A) (B) (C) (D) 分析与解驻波方程为,它不是真正的波.其中是其波线上各点振动的振幅.显然,当时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为.正确答案为(B)6-5一横波在沿绳子传播时的波动方程为,式中y的单位为
4、m,t的单位为s(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t 1s 和t 2 s时的波形,并指出波峰和波谷画出x 1.0 处质点的振动曲线并讨论其与波形图的不同分析(1) 已知波动方程(又称波函数)求波动的特征量(波速u、频率u、振幅A 及波长等),通常采用比较法将已知的波动方程按波动方程的一般形式书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)比较法思路清晰、求解简便,是一种常用的解题方法(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别例如区分质点的振动速度与波速的不同,振动速度
5、是质点的运动速度,即v dy/dt;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定介质不变,波速保持恒定(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y y(x),从而作出波形图而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y y(t),从而作出振动图解(1) 将已知波动方程表示为与一般表达式比较,可得则 (2) 绳上质点的振动速度则 (3) t 1 和t 2 时的波形方程分别为波形图如图(a)所示x 1.0m 处质点的运动方程为振动图线如图(b)所示波形图与振动图虽在图形上相似,但却
6、有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况题6-5 图6-6波源作简谐运动,其运动方程为,它所形成的波形以30-1 的速度沿一直线传播(1) 求波的周期及波长;(2) 写出波动方程分析已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A、角频率及初相0 ,而这三个物理量与波动方程的一般形式中相应的三个物理量是相同的再利用题中已知的波速u 及公式2 2T 和u T 即可求解解(1) 由已知的运动方程可知,质点振动的角频率根据分析中所述,波的周期就是振动的周期,故有波长为uT 0.25 ()
7、将已知的波源运动方程与简谐运动方程的一般形式比较后可得A 4.0 10-3m,0 0故以波源为原点,沿x 轴正向传播的波的波动方程为6-7波源作简谐运动,周期为0.02,若该振动以100m-1 的速度沿直线传播,设t 0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m的两质点间的相位差分析(1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程并可求得振动的初相(2) 波的传播也可以看成是相位的传播由波长的物理含意,可知波线上任两点间的相位差为2x解(1) 由题给条件,
8、可得当t 0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为0 2(或32)若以波源为坐标原点,则波动方程为距波源为x1 15.0 m 和x2 5.0 m 处质点的运动方程分别为它们的初相分别为10 15.5和20 5.5(若波源初相取03/2,则初相10 13.5,20 3.5)(2) 距波源16.0m 和17.0 m 两点间的相位差6-8 图示为平面简谐波在t0 时的波形图,设此简谐波的频率为250Hz,且此时图中质点P 的运动方向向上求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t 0 时该点的振动速度分析(1) 从波形曲线图获取
9、波的特征量,从而写出波动方程是建立波动方程的又一途径具体步骤为:1. 从波形图得出波长、振幅A 和波速u u;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相0 (2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y y(t),及该质点的振动速度udy/dt解(1) 从图中得知,波的振幅A0.10 m,波长20.0m,则波速u u5.0 103 -1 根据t 0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动利用旋转矢量法可得其初相0 /3故波动方程为(2) 距原点O 为x 7
10、.5 处质点的运动方程为t 0 时该点的振动速度为题6-8 图6-9一平面简谐波以速度沿Ox轴正向传播,图示为其在t 0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程题6-9 图分析(1) 根据波形图可得到波的波长、振幅A 和波速u,因此只要求初相,即可写出波动方程而由图可知t 0 时,x 0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知/2(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程yP yP(t)解(1) 由图可知振幅A 0.04 , 波长0.40 , 波速u 0.08-1 ,则2/T 2u/(
11、2/5)-1 ,根据分析已知/2,因此波动方程为(2) 距原点O 为x 0.20 处的P 点运动方程为*6-10一平面简谐波,波长为12 m,沿Ox 轴负向传播图(a)所示为x 1.0 m 处质点的振动曲线,求此波的波动方程题6-10图分析该题可利用振动曲线来获取波动的特征量,从而建立波动方程求解的关键是如何根据图(a) 写出它所对应的运动方程较简便的方法是旋转矢量法解由图(a)可知质点振动的振幅A0.40 ,t0 时位于x1.0 m处的质点在A/2 处并向Oy轴正向移动据此作出相应的旋转矢量图(b),从图中可知又由图(a)可知,t5 s 时,质点第一次回到平衡位置,由图(b)可看出t 56,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理学 教程 第二 上册 课后 答案 13
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内