初中数学几何辅助线作法小结(共14页).doc
《初中数学几何辅助线作法小结(共14页).doc》由会员分享,可在线阅读,更多相关《初中数学几何辅助线作法小结(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几何辅助线作法小结三角形中常见辅助线的作法:延长中线构造全等三角形;利用翻折,构造全等三角形;引平行线构造全等三角形;作连线构造等腰三角形。常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理4) 过图形上某一点作特定的平分线,构造全等三角形
2、,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答(一)、倍长中线(线段)造全等1:已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.2:如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.3:如图,ABC中,BD=DC=AC,E是DC的
3、中点,求证:AD平分BAE.中考应用以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点探究:AM与DE的位置关系及数量关系(1)如图 当为直角三角形时,AM与DE的位置关系是 ,线段AM与DE的数量关系是 ;(2)将图中的等腰Rt绕点A沿逆时针方向旋转(0AD (四)、借助角平分线造全等1:如图,已知在ABC中,B=60,ABC的角平分线AD,CE相交于点O,求证:OE=OD2:如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.中考应用如图,OP是MO
4、N的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(第23题图)OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。(五)、旋转1:正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求EAF的度数.2:D为等腰斜边AB的中点,DM
5、DN,DM,DN分别交BC,CA于点E,F。(1) 当绕点D转动时,求证DE=DF。(2) 若AB=2,求四边形DECF的面积。3.如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;中考应用1、已知四边形中,绕点旋转,它的两边分别交(或它们的延长线)于当绕点旋转到时(如图1),易证当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?(图1)(图2)(图3)2、已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)
6、如图,当APB=45时,求AB及PD的长;(2)当APB变化,且其它条件不变时,求PD的最大值,及相应APB的大小.3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系图1 图2 图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA的延长线上时,若
7、AN=,则Q= (用、L表示)圆中作辅助线的常用方法(1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。(2)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。(3)若题目中有“直径”这一条件,可适当选取圆周上的点,连结此点与直径端点得到90度的角或直角三角形。(4)连结同弧或等弧的圆周角、圆心角,以得到等角。(5)若题中有与半径(或直径)垂直的线段,如图1,圆O中,BDOA于D,经常是:如图1(上)延长BD交圆于C,利用垂径定理。如图1(下)延长AO交圆于E,连结BE,BA,得RtABE。 图1(上) 图1(下)(6)若题目中有“切线”条件时
8、,一般是:对切线引过切点的半径,(7)若题目中有“两圆相切”(内切或外切),往往过切点作两圆的切线或作出它们的连心线(连心线过切点)以沟通两圆中有关的角的相等关系。(8)若题目中有“两圆相交”的条件,经常作两圆的公共弦,使之得到同弧上的圆周角或构成圆内接四边形解决,有时还引两连心线以得到结果。(9)有些问题可以先证明四点共圆,借助于辅助圆中角之间的等量关系去证明。(10)对于圆的内接正多边形的问题,往往添作边心距,抓住一个直角三角形去解决。例题1:如图,在圆O中,B为的中点,BD为AB的延长线,OAB=500,求CBD的度数。例题2:如图3,在圆O中,弦AB、CD相交于点P,求证:APD的度数
9、=(弧AD+弧BC)的度数。 一、造直角三角形法1.构成Rt,常连接半径例1. 过O内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM长;2.遇有直径,常作直径上的圆周角例2. AB是O的直径,AC切O于A,CB交O于D,过D作O的切线,交AC于E. 求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB交O于C、D,且AC=BD,AE切O于E,BF切O于F.求证:OAE = OBF;4.遇有公切线,常构造Rt(斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长)例4 .小 O1与大O2外切于点A,外公切线BC、DE分别和O1、O2切于点B、C和D、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 几何 辅助线 作法 小结 14
限制150内