汽车空调热负荷计算及选型算例(共6页).doc





《汽车空调热负荷计算及选型算例(共6页).doc》由会员分享,可在线阅读,更多相关《汽车空调热负荷计算及选型算例(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上Example:一、M -Vehicle Key information Survey for Air conditionSheet 1: Vehicle Key information Survey1.Vehicle: Max Passenger (driver included) :5 persons Inner volume space:3.8m32 Glass Windshield : Materials: White+PVB Width:4mm Areas:1.06m2 Conduction coefficient: 6.4 Transmission rat
2、e:0.7 L-front window: Materials: Green Width:3.2mm Areas:0.33m2 Conduction coefficient:6.4 Transmission rate:0.7 R-front window: Materials:Green Width: 3.2mm Areas:0.33m2 Conduction coefficient:6.4 Transmission rate:0.7 L-rear window: Materials:Green Width: 3.2mm Areas:0.28m2 Conduction coefficient:
3、6.4 Transmission rate:0.7 R-rear window: Materials:Green Width: 3.2mm Areas:0.28m2 Conduction coefficient:6.4 Transmission rate:0.7 Black window : Materials:Green Width: 3.2mm Areas:0.78m2 Conduction coefficient:6.4 Transmission rate:0.73 Roof panel Roof outside: Materials: DC04 Width: 0.7mm Areas:
4、1.85m2 Conduction coefficient:484 Roof Roof inside: Materials: PE+PU Width: 2mm Areas:1.85m2 Conduction coefficient:0.045 Base : Materials: PU+GF Width:4.7mm Areas:1.85m2 Conduction coefficient:0.05 Roof Back: Materials: PET Width:0.5mm Areas:1.85m2 Conduction coefficient:0.055 Floor Front floor: Ma
5、terials: DC04 Width: 0.8mm Areas:0.949m2 Conduction coefficient:48 Middle floor: Materials: DC04 Width: 0.7mm Areas:0.921m2 Conduction coefficient:48 Rear floor: Materials: DC04 Width: 0.7mm Areas:1.322m2 Conduction coefficient:48 Central floor: Materials: DC04 Width: 1.2mm Areas:0.688m2 Conduction
6、coefficient:48 Damper cushion: Materials: spin felt Width: 20mm Areas: 2.26m2 Conduction coefficient:0.05 Carpet: Materials:PETEVA Width: 5mm Areas: 2.26m2 Conduction coefficient:0.056 Firewall Dash panel Materials: B180H1 Width:1.2mm Areas: 1.17m2 Conduction coefficient:48 Outside damper Materials:
7、Al-foilPET GFPET Width:25mm Areas:0.75 m2 Conduction coefficient:0.045 Inside damper Materials: EVAPU Width:25mm Areas:0.295m2 Conduction coefficient:0.05 In- down damper Materials: EVAPU Width:25mm Areas:0.737 m2 Conduction coefficient:0.057Side body Outside Materials: DC04 Width: 0.7 mm Areas:1.4m
8、2 Conduction coefficient:48 Inside Materials:B340/590DP /B340LA Width: 1.5 mm Areas:1.4m2 Conduction coefficient:48 Inside trim Materials: PP-T20 Width: 2.5 mm Areas:1.4m2 Conduction coefficient:0.058.Door Outside Materials:B180H1 Width: 0.7 mm Areas:2.81m2 Conduction coefficient:48 Inside Materials
9、: DC04 Width: 0.8 mm Areas:2.81m2 Conduction coefficient:48 Inside trim Materials:ABSPVC PP+EPDM-T20 Width:3mm Areas:2.81m2 Conduction coefficient:0.05备注:Conduction coefficient单位为:w/m2.k二、Air Conditioning Performance Setting2.1 Test procedure: 4 person, 40km/h(60min)-idle(20min)90km/h(20min), Other
10、specification can refer to standards2.2 AC target setting according to SOR, Sheet2:Time (min)Average of breath levelAverage of Air outlets332 17 52814202394522760227802813100217三、Refrigerant Heat load Computation3.1 Some data needed in computation3.1.1、Surface area,sheet 3:No.ItemsSurface(m2)NotesFr
11、ont 1.061 GlassRear0.78Side1.222Roof1.853Side body1.44door2.815cowl1.173.1.2、Conditions for Air condition: Outside Temp:40( Test procedure) Target Average breath level:22(Items included in SOR) Vehicle speed:40km/h3.2 Calculation stepsAir condition refrigerant Heat load can be divided into two parts
12、, one is Temperature difference load ,the other one is humidity load.3.2.1 Temperature difference load1、Sun load In the presence of Solar radiation, part of the heat is absorbed by the glass, part of the solar radiation transmitted through the glass, and the rest of them is be reflected. The glass a
13、bsorbs the solar heat and heat transfer from the outside high air temperature, All these will results in glass Temperature heat transfer. And the heat transmission through the glass will be storage in vehicle body or trims ,it will transfer the heat in a slow way .In this calculation, all that solar
14、 radiation heat transfer into vehicle is assumed to be quick transient load . So ,QGlassA Tk+MAC( qb) and:AAll glass surface area,take it as 3.06 m2 Ttb-ti ( tb is the synthesis temperature of glass,considering the poor heat storage of the glass We can take the transfer coefficient as G(Z)=1, so we
15、can take tb as 40;ti is Average target breath level Temp in cabin .ti22) Ksynthesis heat transfer coefficient,we can take it as 6.4w/m2.k , m Non single glass adjust number,we choose 1.0 CSolar shelter adjust number,we take 1.0 MGlass Area Coefficient ,consider the Angle we will take it as 0.8 for f
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汽车空调 负荷 计算 选型

限制150内