《直线的一般式方程习题(共9页).docx》由会员分享,可在线阅读,更多相关《直线的一般式方程习题(共9页).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上3.2.2 直线的一般式方程课后小练一、选择题1若方程AxByC0表示直线,则A、B应满足的条件为()AA0 BB0CAB0 DA2B202直线(2m25m2)x(m24)y5m0的倾斜角为45,则m的值为()A2 B2 C3 D33直线x2ay10与(a1)xay10平行,则a的值为()A B或0C0 D2或04直线l过点(1,2)且与直线2x3y40垂直,则l的方程是()A3x2y10 B3x2y70C2x3y50 D2x3y805直线l1:axyb0,l2:bxya0(a0,b0,ab)在同一坐标系中的图形大致是()21世纪教育网版权所有6直线axbyc0 (a
2、b0)在两坐标轴上的截距相等,则a,b,c满足()Aab B|a|b|且c0Cab且c0 Dab或c0二、填空题7直线x2y60化为斜截式为_,化为截距式为_8已知方程(2m2m3)x(m2m)y4m10表示直线,则m的取值范围是_9已知A(0,1),点B在直线l1:xy0上运动,当线段AB最短时,直线AB的一般式方程为_21cnjycom三、解答题10根据下列条件分别写出直线的方程,并化为一般式方程:(1)斜率为,且经过点A(5,3);(2)过点B(3,0),且垂直于x轴;(3)斜率为4,在y轴上的截距为2;(4)在y轴上的截距为3,且平行于x轴;(5)经过C(1,5),D(2,1)两点;(
3、6)在x轴,y轴上截距分别是3,111已知直线l1:(m3)xy3m40,l2:7x(5m)y80,问当m为何值时,直线l1与l2平行21cnjy能力提升12将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m,n)重合,则mn的值为()www.21-cn-A8 B C4 D1113已知直线l:5ax5ya30(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围14已知两直线方程l1:mx2y80和l2:xmy30,当m为何值时:(1)两直线互相平行?(2)两直线互相垂直?15设直线l的方程为(m22m3)x(2m2m1)y2m
4、6,根据下列条件分别求m的值(1)在x轴上的截距为1;(2)斜率为1;(3)经过定点P(1,1) 16直线过点P且与x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线同时满足下列条件:(1)AOB的周长为12;(2)AOB的面积为6.若存在,求出直线的方程;若不存在,请说明理由323直线的一般式方程 答案课后小练1D2D由已知得m240,且1,解得:m3或m2(舍去)3A4A由题意知,直线l的斜率为,因此直线l的方程为y2(x1),即3x2y105C将l1与l2的方程化为斜截式得:yaxb,ybxa,根据斜率和截距的符号可得C6D直线在两坐标轴上的截距相等可分为两种情形:(
5、1)截距等于0,此时只要c0即可;(2)截距不等于0,此时c0,直线在两坐标轴上的截距分别为、若相等,则有,即ab【来源:21世纪教育网】综合(1)(2)可知,若axbyc0 (ab0)表示的直线在两坐标轴上的截距相等,则ab或c021世纪*教育网7yx318mR且m1解析由题意知,2m2m3与m2m不能同时为0,由2m2m30得m1且m;由m2m0,得m0且m1,故m19xy10解析ABl1时,AB最短,所以AB斜率为k1,方程为y1x,即xy1010解(1)由点斜式方程得y3(x5),即xy350(2)x3,即x30(3)y4x2,即4xy20(4)y3,即y30(5)由两点式方程得,即2
6、xy30(6)由截距式方程得1,即x3y3011解当m5时,l1:8xy110,l2:7x80显然l1与l2不平行,同理,当m3时,l1与l2也不平行当m5且m3时,l1l2,m2m为2时,直线l1与l2平行12B点(0,2)与点(4,0)关于直线y12(x2)对称,则点(7,3)与点(m,n)也关于直线y12(x2)对称,www-2-1-cnjy-com则,解得,故mn13(1)证明将直线l的方程整理为ya(x),l的斜率为a,且过定点A(,)而点A(,)在第一象限,故l过第一象限不论a为何值,直线l总经过第一象限(2)解直线OA的斜率为k3l不经过第二象限,a314解:(1)当m0时,l1
7、与l2显然不平行当m0时,l1的斜率k1,在y轴上的截距b14,l2的斜率k2,在y轴上的截距b2.l1l2,k1k2,且b1b2,即,且4,m.综上可知,当m时,两直线互相平行(2)当m0时,l1显然与l2垂直当m0时,l1的斜率为k1,l2的斜率为k2,l1l2,1,此时无解综上可知,当m0时,两直线垂直15解:(1)直线过点P(1,0),m22m32m6.解得m3或m1.又m3时,直线l的方程为y0,不符合题意,m1.(2)由斜率为1,得解得m.(3)直线过定点P(1,1),则(m22m3)(2m2m1)2m6,解得m或m2.16解:设直线方程为1(a0,b0),若满足条件(1),则ab12.又直线过点P,1.由可得5a232a480,解得或所求直线的方程为1或1,即3x4y120或15x8y360.若满足条件(2),则ab12,由题意得,1,由整理得a26a80,解得或所求直线的方程为1或1,即3x4y120或3xy60.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x4y120.专心-专注-专业
限制150内