初三数学知识点(共9页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初三数学知识点(共9页).doc》由会员分享,可在线阅读,更多相关《初三数学知识点(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 二次根式 1 二次根式:形如()的式子为二次根式; 性质:()是一个非负数; ; 。 2 二次根式的乘除: ; 。 3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。4 海伦-秦九韶公式:,S是三角形的面积,p为。第二章 一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。2 一元二次方程的解法 配方法:将方程的一边配成完全平方式,然后两边开方; 公式法: 因式分解法:左边是两个因式的乘积,右边为零。3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么
2、有 第三章 旋转 1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。 2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 3 关于原点对称的点的坐标 第四章 圆 1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的
3、直径垂直弦,并且平分弦所对的两条弧。 3 弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 4 圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 5 点和圆的位置关系 点在圆外 点在圆上 d=r 点在圆内 dr 定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。 6直线和圆的位置关系 相交 dr 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外
4、端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。 7 圆和圆的位置关系 外离 dR+r 外切 d=R+r 相交 R-rdR+r 内切 d=R-r 内含 d0,开口向上;a0,开口向下; 对称轴:; 顶点坐标:; 图像的平移可以参照顶点的平移。2 用函数观点看一元二次方程3 二次函数与实际问题第七章 相似1 图形的相似 相似多边形的对应边的比值相等,对应角相等; 两个多边形的对应角相等,对应边的比值也相等,那
5、么这两个多边形相似; 相似比:相似多边形对应边的比值。2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似; 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。3 相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。4 位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。第
6、八章 锐角三角函数1 锐角三角函数:正弦、余弦、正切;2 解直角三角形第九章 投影和视图 1 投影:平行投影、中心投影、正投影2 三视图:俯视图、主视图、左视图。3 三视图的画法 初三数学知识点 一、一元二次方程1. 一元二次方程的一般形式: a0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但
7、计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a0)时,=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:0 有两个不等的实根; =0 有两个相等的实根;0 无实根; 0 有两个实根(等或不等).4. 一元二次方程的根系关系: 当ax2+bx+c=0 (a0) 时,如0,有下列公式: 5当ax2+bx+c=0 (a0) 时,有以下等价命题:(以下等价关系要求会用公式 ;=b2-4ac 分析,不要求背记)(1)两根互为相反数 = 0且0 b = 0且0;(2)两根互为倒数 =1且0
8、a = c且0;(3)只有一个零根 = 0且0 c = 0且b0;(4)有两个零根 = 0且= 0 c = 0且b=0;(5)至少有一个零根 =0 c=0;(6)两根异号 0 a、c异号;(7)两根异号,正根绝对值大于负根绝对值 0且0 a、c异号且a、b异号;(8)两根异号,负根绝对值大于正根绝对值 0且0 a、c异号且a、b同号;(9)有两个正根 0,0且0 a、c同号, a、b异号且0;(10)有两个负根 0,0且0 a、c同号, a、b同号且0.6求根法因式分解二次三项式公式:注意:当 0时,二次三项式在实数范围内不能分解.ax2+bx+c=a(x-x1)(x-x2) 或 ax2+bx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 知识点
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内