第五章-刚体力学-习题解答(共23页).doc
《第五章-刚体力学-习题解答(共23页).doc》由会员分享,可在线阅读,更多相关《第五章-刚体力学-习题解答(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上5.1、一长为的棒,靠在半径为的半圆形柱面上,如图所示。今点以恒定速度沿水平线运动。试求:(i)点的速度;(ii)画出棒的瞬时转动中心的位置。解:如图,建立动直角系,取点为原点。,关键是求法1(基点法):取点为基点,即,化成标量为在直角三角形中,所以即取点为基点,那么点的速度为:法2(瞬心法):如图,因棒上点靠在半圆上,所以点的速度沿切线方向,故延长,使其和垂直于点速度线交于点,那么点为瞬心。在直角三角形中,在直角三角形中,即取点为基点,那么点的速度为:5.2、一轮的半径为,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度前进。求轮缘上任一点(该点处的轮辐与水平线成角
2、)的速度和加速度。解:任取轮缘上一点,设其速度为,加速度为如图,取轮心为原点,建立动系,其中轮心的速度方向为轴正向,平面位于轮上。那么轮子的角速度为取点为基点,那么因轮无滑动地滚动,所以点为瞬心。即,化简有,那么有:5.3、半径为的圆柱夹在两块相互平行的平板和之间,两板分别以速度和匀速反向运动,如图示。若圆柱和两板间无相对滑动,求:(i)圆柱瞬心的位置(ii)位于圆柱上与板的接触点的加速度。解:(i)如图,圆柱瞬心的位置为点,不妨设在图示的直角坐标系中,因为,所以有,联立解得:或者取点为基点,那么:求得,因,故于是求得瞬心的位置位于距离点的直径上。(ii) 瞬心到圆柱轴心的距离为圆柱轴心的速度
3、为点相对点的速度为:点相对点做圆周运动,故5.4、高为、顶角为的圆锥,在一平面上无滑动地滚动。已知圆锥轴线以恒定角速度绕过顶点的铅直轴转动。求:(i)圆锥的角速度(ii)锥体底面上最高点的速度(iii)圆锥的角加速度解:取圆锥的顶点为原点,建立动系取圆锥和平面交线为轴,圆锥的对称面位于平面因圆锥轴线以恒定角速度绕过顶点的铅直轴转动,若设圆锥绕自身轴线的角速度为那么圆锥绕顶点的角速度为又母线与平面接触,为圆锥的瞬时转动轴,故平行于(i)在角速度合成的矢量三角形中,圆锥的角速率,即(ii)在动系中,锥体底面上最高点的位矢可以表示为:由图中的几何关系可知:所以那么最高点的速度为:(iii)因圆锥的角
4、速度为,所以圆锥的角加速度为:5.5、在一半径为的球体上置一半径为的较小的球,它们的连心线与竖直轴间保持角,如图示。若绕竖直轴以恒定的角速度转动,小球在大球上无滑动地滚动。分别求出小球最高点和最低点的速度。解:建立如图所示的动直角坐标系使位于平面内。则有:,在大球和小球的角速度矢量直角三角形中,有所以5.6、一边长为、质量为的匀质立方体,分别求出该立方体对过顶点的棱边、面对角线和体对角线的转动惯量、和解:如图,要求图示棱边的转动惯量,先求立文体过质心点,且平行于棱的轴的转动惯量在图示的直角坐标系中,轴皆为惯量主轴故由平行轴定理:要求图示面对角线的转动惯量,先求立文体过质心点,且平行于面对角线的
5、轴的转动惯量,此轴与坐标轴的方向余弦分别为,坐标轴为惯量主轴,所以有:由平行轴定理有:体对角线与坐标轴的方向余弦分别为,坐标轴为惯量主轴,那么体对角线的转动惯量为:5.7、一匀质等边三角形的薄板,边长为、质量为。试在图示坐标系下,求出薄板对质心的惯量矩阵,并由此导出对顶点的惯量矩阵。图中坐标系和坐标系的坐标轴分别相互平行,和都在薄板平面内。解:由图中坐标系的取法可知,轴是三角板的对称轴,轴是是三角板的对称面的法线,故都是惯量主轴。三角板的密度为:先求三角板对轴的转动惯量。因三角板关于轴对称,所以三角板对轴的转动惯量是轴一侧直角板的2倍,如图,取距离点为,厚为的线性微元,由图中几何关系知,线性微
6、元的高为,线性微元对过质心且垂直于线性微元的轴的转动惯量为,由平行轴定理知线性微元对轴的转动惯量:再求三角板对轴的转动惯量如图,取距离点为,厚为的线性微元,由图中几何关系知,线性微元的长为,线性微元对过质心且垂直于线性微元的轴的转动惯量为故线性微元对轴的转动惯量:最后求轴的转动惯量:如图,对于线元过中心且平行于轴的转动惯量为由平行轴定理知线元对轴的转动惯量为:所以三角板对板对质心的惯量矩阵由平行轴定理易知:因三角板中,所以因三角板的两腰在坐标系中方程为:和即和所以5.8、质量为,长为的细长杆,绕通过杆端点的铅直轴以角速度转动。杆与转轴间的夹角保持恒定。求杆对端点的角动量。解:选取端点为原点,建
7、立如图所示的直角坐标系,并取杆方向为轴那么,因杆上的质点在轴上,所以,故杆对点的惯量矩阵为:在图示的直角坐标系中,于是杆对点的角动量为:即5.9、一半径为,质量为的圆盘,在水平面上作纯滚动,盘面法线与铅直轴间保持恒定角度,盘心则以恒定速率作半径为的圆周运动。求圆盘的动能。解:如图所示,过圆盘的质心作法线,与铅直轴相交于点,建立动直角坐标系,轴沿方向。连接,以及连接,这样就构成了一个陀螺在平面滚动。且为陀螺的瞬时转动轴,故圆盘的角速度为:。因轴都是圆盘的对称线,所以轴,轴和轴都是惯量主轴。设铅直转轴与水平面相交于点。设圆盘绕轴自转的角速度为圆盘的盘心绕铅直轴的角速度为:由图中的几何关系知:,又已
8、知,即 ,在角速度矢量三角形合成的图示中,即化简有: ,所以,即因坐标轴都是惯量主轴,所以圆盘的动能为: 5.10、一半径为的匀质圆盘,平躺在粗糙的水平桌面上,绕通过其中心的竖直轴转动,初始时刻圆盘的角速度大小为。已知圆盘与桌面间的摩擦系数为。问经过多少时间圆盘将停止转动?解:设匀质圆盘的面密度为,在圆盘上取一微元,数据如图所示。圆盘对过其中心的竖直轴的转动惯量为由角动量定理,因圆盘定轴转动。故圆盘上所取微元只受重力,水平桌面的支持力和摩擦力重力和支持力大小相等,方向相反。若选择逆时针为正。那么有: 圆盘上所取微元的力矩为: ,化简为:积分可得:,为积分常数因初始时刻,时,代入的表达式可得:因
9、此显然圆盘停止转动时,即,解得5.11、如图示,一矩形匀质薄板,长为,宽为,质量为。薄板绕竖直轴以初角速度转动,阻力与薄板表面垂直并与面积及速度的平方成正比,比例系数为,问经过多少时间后,薄板的角速度减为初角速度的一半?解:匀质薄板的密度为,在薄板上取一矩形微元,数据如图所示。因阻力与薄板表面垂直并与面积及速度的平方成正比,比例系数为又微元质量为:,微元速度为:所以微元受到的阻力为:微元对轴的转动惯量为薄板对轴的转动惯量为:微元受到的力矩为薄板受到的力矩为:据定轴转动角动量定理:代入数据得:,分离变量:积分得:,为积分常数因薄板绕竖直轴以初角速度转动,即,所以当薄板的角速度减为初角速度的一半时
10、有:,化简知5.12、一质量为,长为的匀质细长杆,一端与固定点光滑铰链。初始时刻杆竖直向上,尔后倒下,试分别求出此后杆绕铰链转动的角速度,作用于铰链上的力与杆转过的角度的关系。解:建立如图示的动直角坐标系杆对过质心且垂直于杆的轴的转动惯量为因杆在旋转过程中只有重力做,机械能守恒:化简有:,即对杆用质心定理有:即杆对轴的力矩为:由坐标轴的取法知,对轴有,因杆绕轴作定轴转动,故所以有:,即代入得:或者求角速度时用角动量定理:,化简:即,两边积分可得:求得质心定理:,代入可得:5.13、一段匀质圆弧,半径为,绕通过弧线中点并与弧线垂直的水平轴线摆动,求弧线作微振动时的周期。解:建立如图所示的直角坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 刚体 力学 习题 解答 23
限制150内