第七章线性变换总结篇(高等代数)(共10页).doc
《第七章线性变换总结篇(高等代数)(共10页).doc》由会员分享,可在线阅读,更多相关《第七章线性变换总结篇(高等代数)(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第 7章 线性变换7.1知识点归纳与要点解析一线性变换的概念与判别1.线性变换的定义数域上的线性空间的一个变换称为线性变换,如果对中任意的元素和数域中的任意数,都有:,。注:的线性变换就是其保持向量的加法与数量乘法的变换。2.线性变换的判别设为数域上线性空间的一个变换,那么:为的线性变换3.线性变换的性质 设是数域上的线性空间,为的线性变换,。性质1. ;性质2. 若线性相关,那么也线性相关。性质3. 设线性变换为单射,如果线性无关,那么 也线性无关。注:设是数域上的线性空间,是中的两个向量组,如果:记:于是,若,是的一组基,是的线性变换, 是中任意一组向量,如果:
2、记:那么:设,是矩阵的列向量组,如果是的一个极大线性无关组,那么就是 的一个极大线性无关组,因此向量组的秩等于秩。4. 线性变换举例(1)设是数域上的任一线性空间。零变换: ; 恒等变换:。 幂零线性变换:设是数域上的线性空间的线性变换,如果存在正整数,使得,就称为幂零变换。 幂等变换:设是数域上的线性空间的线性变换,如果,就称为幂等变换。(2),任意取定数域上的一个级方阵 ,令:。(3),。(4),是中一固定矩阵,。二线性变换的运算、矩阵1. 加法、乘法、数量乘法(1) 定义: 设是数域上的线性空间,是的两个线性变换,定义它们的和、乘积分别为:对任意的 ,任取,定义数量乘积为:对任意的的负变
3、换为:对任意的则、与都是的线性变换。(2)=为的线性变换,按线性变换的加法和数乘运算做成数域上的维线性空间。2. 线性变换的矩阵(1)定义:设是数域上的维线性空间,是的线性变换,是的一组基,如果:那么称矩阵为线性变换在基下的矩阵。此时: (2)线性变换的和、乘积、数量乘积、逆变换、负变换及线性变换多项式的矩阵:设是数域上的维线性空间的一组基,设它们在下的矩阵分别为。1), 是数域上的线性空间到数域上的线性空间的同构映射,因此。 2)可逆可逆3)、与在基下的矩阵分别为与; 任取,在基下的矩阵为; 若为可逆线性变换,则在基下的矩阵为; 设为数域上的任一多项式,那么(为的恒等变换)在基下的矩阵为:。
4、三特征值、特征向量与对角矩阵1. 矩阵的特征值与特征向量(1)矩阵的特征多项式:设为级复方阵,将多项式称为的特征多项式。注: 1)若,则:2) 将称为矩阵的特征矩阵,称为矩阵的特征方程。(2) 定义:级方阵的特征多项式在复数域上的所有根都叫做其特征值(根),设是的特征值,齐次线性方程组的每个非零解都叫做矩阵的属于其特征值的特征向量。(3)求法:1)求在复数域上的所有根(重根按重数计算);2)对解齐次线性方程组,得其一个基础解系(秩),则矩阵的属于特征值的全部特征向量为,其中为不全为零的任意常数(复数)。(4) 重要结论:1)设是的特征值,是的属于其特征值的特征向量,为一复系数多项式。 为的特征
5、值,为的属于特征值的特征向量; 如果还是可逆矩阵,那么与分别为和的特征值,为的属于特征值的特征向量,为的属于特征值的特征向量, 若是矩阵的全部特征值,那么就是的全部特征值,如果还是可逆矩阵,则为的全部特征值,为的全部特征值;2)若是矩阵的全部特征值,那么,。2. 线性变换的特征值与特征向量(1)定义:设是数域上的线性空间的线性变换,若存在,使得,就称为的一个特征值,为的一个属于特征值的特征向量。(2)线性变换的特征多项式设是数域上的维线性空间的线性变换,任取的一组基,设 在该基下的矩阵为,称矩阵为的特征多项式为的特征多项式,记为,即线性变换的特征多项式为其在任意基下矩阵的特征多项式。(3)求法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 线性变换 总结 高等 代数 10
限制150内