高等代数上题库(共40页).doc





《高等代数上题库(共40页).doc》由会员分享,可在线阅读,更多相关《高等代数上题库(共40页).doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高等代数题库第一章 多项式一填空题1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是 。2、当p(x)是 多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b 。5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。7、如果f(x)=x3
2、-3x+k有重根,那么k= 。8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是 。10、如果(f(x),g(x))=1,(h(x),g(x))=1 则 。11、设p(x)是不可约多项式,p(x)|f(x)g(x),则 。12、如果f(x)|g(x),g(x)|h(x),则 。13、设p(x)是不可约多项式,f(x)是任一多项式,则 。14、若f(x)|g(x)+h(x),f(x)|g(x),则 。15、若f(x)|g(x),f(x)| h(x),则 。16、若g(x)|f(x),h(
3、x)|f(x),且(g(x),h(x)=1,则 。17、若p(x) |g(x)h(x),且 则p(x)|g(x)或p(x)|h(x)。18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则 。19、是f(x)的根的充分必要条件是 。20、f(x)没有重根的充分必要条件是 。答案1、-x+6 2、不可约 3、互素 4、a=0,b=1 5、k=3 6、a=3,b=-7 7、k=28、x5-6x4+15x3-20x2+14x-4 9、1-i,1+i 1+,1- 10、(f(x)h(x),g(x)=1 11、p(x)|f(x)或p(x)|g(x) 12、f(x)|h(x) 13、p(x
4、)|f(x)或(p(x),f(x)=1 14、f(x)|h(x) 15、f(x)|g(x)+h(x) 16、g(x)h(x)|f(x) 17、p(x)是不可约多项式 18、f(x)|g(x)且f(x)|h(x) 19、x-|f(x) 20、(f(x),f(x)=1二判断并说明理由1、数集是数域( )2、数集是数域 ( )3、若f(x)|g(x)h(x),f(x)|g(x),则f(x)|h(x) ( )4、若f(x)|g(x)+h(x),f(x)|g(x),则f(x)|h(x) ( )5、若g(x)|f(x),h(x)|f(x),则g(x)h(x)|f(x) ( )6、若(f(x)g(x),h(
5、x))=1,则(f(x),h(x))=1 (g(x),h(x)=1 ( )7、若f(x)|g(x)h(x),且f(x)|g(x),则(f(x),h(x)=1 ( )8、设p(x)是数域p上不可约多项式,那么如果p(x)是f(x)的k重因式,则p(x)是f(x)的k-1重因式。 ( )9、如果f(x)在有理数域上是可约的,则f(x)必有有理根。( )10、f(x)=x4-2x3+8x-10在有理数域上不可约。( )11、数集是数域 ( )12、数集是数域 ( )13、若f(x)|g(x)h(x),则f(x)|g(x)或f(x)|h(x) ( )14、若f(x)|g(x),f(x)|h(x),则f
6、(x)|g(x)h(x) ( )15、若f(x)|g(x)+h(x),f(x)|g(x)-h(x),则f(x)|g(x)且f(x)|h(x) ( )16、若有d(x)=f(x)u(x)+g(x)v(x),则d(x)是f(x),g(x)的最大公因式 ( )17、若p(x)是f(x)内的k重因式,则p(x)是f(x)的k+1重因式( )18、如果f(x)没有有理根,则它在有理数域上不可约。( )19、奇次数的实系数多项式必有实根。( )20、 f(x)=x6+x3+1在有理数域上可约。( )答案:1、 2、 3、 4、 5、 6、 7、 8、 9、 10、11、 12、 除法不封闭 13、 当f(
7、x)是不可约时才成立 14、 如f(x)=x2,g(x)=h(x)=x时 不成立 15、 16、 17、如f(x)=xk+1+1 18、19、虚根成对 20、 变形后用判别法知 不可约三选择题1、以下数集不是数域的是( )A、,i2= -1B、 ,i2= -1 C、D、2、关于多项式的整除,以下命题正确的是 ( ) A、若f(x)|g(x)h(x),且f(x)|g(x)则f(x)|h(x)B、若g(x)|f(x),h(x)|f(x),则g(x)h(x)|f(x)C、若f(x)|g(x)+h(x),且f(x)|g(x),则/ f(x)|h(x)D、若f(x)|g(x),f(x)|h(x),则f(
8、x)|g(x)h(x)3、关于多项式的最大公因式,以下结论正确的是 ( )A、若f(x)|g(x)h(x) 且f(x)|g(x) ,则(f(x),h(x))=1B、若存在u(x),v(x),使得f(x)u(x)+g(x)v(x)=d(x),则d(x)是f(x)和g(x)的最大公因式C、若d(x)|f(x),且有f(x)u(x)+g(x)v(x) =d(x),则d(x)是f(x)和g(x)的最大公因式D、若(f(x)g(x),h(x)=1,则(f(x),h(x)=1且(g(x),h(x)=1( )4、关于多项式的根,以下结论正确的是 ( )A、如果f(x)在有理数域上可约,则它必有理根。B、如果
9、f(x)在实数域上可约,则它必有实根。C、如果f(x)没有有理根,则f(x)在有理数域上不可约。D、一个三次实系数多项式必有实根。5、关于多项式的重因式,以下结论正确的是( )A、若f(x)是f(x)的k重因式,则p(x) 是f(x)的k+1重因式B、若p(x)是f(x)的k重因式,则p(x) 是f(x),f(x)的公因式C、若p(x)是f(x)的因式,则p(x)是f(x)的重因式D、若p(x)是f(x)的重因式,则p(x)是的单因式6、关于多项式的根,以下结论不正确的是 ( )A、是f(x)的根的充分必要条件是x-|f(x)B、若f(x)没有有理根,则f(x)在有理数域上不可约C、每个次数1
10、的复数系数多项式,在复数域中有根D、一个三次的实系数多项式必有实根7、设f(x)=x3-3x+k有重根,那么k=( ) A、1 B、-1 C、2 D、08、设f(x)=x3-3x2+tx-1是整系数多项式,当t=( )时,f(x)在有理数域上可约。A、1 B、0 C、-1 D、3或-59、设f(x)=x3-tx2+5x+1是整系数多项式,当t=( )时,f(x)在有理数域上可约。 A、t=7或3 B、1 C、-1 D、010、设f(x)=x3+tx2+3x-1是整系数多项式,当t=( )时,f(x)在有理数域上可约。A、1 B、-1 C、0 D、5或-311、关于不可约多项式p(x),以下结论
11、不正确的是( )A、若p(x)|f(x)g(x),则p(x)|f(x)或p(x)|g(x)B、若q(x)也是不可约多项式,则(p(x),q(x))=1或p(x)=cq(x) c0C、p(x)是任何数域上的不可约多项式D、p(x)是有理数域上的不可约多项式12、设f(x)=x5+5x+1,以下结论不正确的是( )A、f(x)在有理数域上 不可约B、f(x)在有理数域上 可约C、f(x)有一实根D、f(x)没有有理根13、设f(x)=xp+px+1,p为奇素数,以下结论正确的是 ( )A、f(x)在有理数域上 不可约B、f(x)在有理数域上 可约C、f(x)在实数域上 不可约D、f(x)在复数域上
12、 不可约答案:1、B 2、C 3、D 4、D 5、D 6、B 7、C 8、D 9、A 10、D 11、C 12、B 13、A 四计算题1、求m,p的值使 x2+3x+2|x4-mx2-px+2解:用带余除法 求得r(x)=-(3m+p+15)x-(2m+12)令r(x)=0即求得m= -6 p=32、判断=x4-6x2+8x-3有无重因式,如果有,求其重数解:f (x)=4x3-12x+8 (f(x), )=(x-1)2x-1是f(x)的三重因式 3、设f(x)=x4-3x3+6x2-10x+16, C=3,求f(c)解:用综合除法求得f(c)=404、决定t的值,使f(x)=x3-3x2+t
13、x-1 有重根解:由辗转除法使(f(x), )求得t=3 或t=当t=3时 f(x)有三重根1 当t=时,f(x)有二重根-5、设f(x)=x5+x4-2x3-x2-x+2,求f(x)的有理根,并写出f(x)在实数域和复数域上的标准分解式。解:有理根是1(二重),2 实数域上分解式为f(x)=(x-1)2(x+2)(x2+x+1)复数域上分解式为f(x)=(x-1)2(x+2)(x+-i)(x+6、求f(x)=4x4-7x2-5x+1的有理根,并写出f(x)在有理数域上的标准分解式。解:有理根为(二重)分解式为f(x)=4(x+)2(x2-x-1)7、求f(x)=x5+x4-6x3-14x2-
14、11x-3的有理根,并写出f(x)在复数域上的标准分解式解:有理根为1(四重)3,分解式f(x)=(x+1)4(x-3)8、已知i, z-i 是f(x)=2x5-7x4+8x3-2x2+6x+5的两个根,求f(x)的全部根解:全部根为 i,-i,2-i,2+i, 9、求以1-i, i为根的次数最低的复系数多项式f(x)解:f(x)=x2-x+(1+i)10、求以1为二重根,1=I为单根的次数最低近的实系数多项式f(x).解:f(x)=x4-4x3-x2-6x+211、已知1-i是f(x)=x4-4x3-5x2-2x-2的根,求f(x)的全部根。解:全部根为1+i,1-i,1+,1-五证明题1、
15、试证用x2-1除f(x)所得余式为证明:设余式为ax+b,则有f(x)=(x2-1)q(x)+ax+b f(1)=a+b ,f(-1)=-a+b求得a=2、证明,h(x)(f(x),g(x)=(f(x)h(x),g(x)h(x),其中h(x)是首项系数为1的多项式。证明:设(f(x),g(x))=d(x) ,则h(x)d(x)|h(x)f(x) h(x)d(x)|h(x)g(x),又存在u(x),v(x),使得f(x)u(x)+g(x)v(x)=d有h(x)f(x)u(x)+h(x)g(x)v(x)=h(x)g(x)于是h(x)d(x)=(h(x)f(x),h(x)g(x)3、证明,如果f(x
16、)|g(x)h(x),且(f(x),g(x)=1,则f(x)|h(x) 证明:由(f(x),g(x)=1,存在u(x),v(x)使得f(x)u(x)+g(x)v(x)=1,从而f(x)u(x)h(x)+g(x)v(x)h(x)=h(x),f(x)|g(x)h(x),f(x)h(x) 所以f(x)|h(x)4、证明,(f(x)+g(x),f(x)-g(x))=(f(x),g(x) 证明:(f(x)+g(x)=d(x) 则d(x)|f(x)+g(x)d(x)|f(x)-g(x) 设d1(x) 是f(x)+g(x),f(x)-g(x)r的任一公因式 则d1(x)|f(x)+g(x)+f(x)-g(x
17、)=zf(x) d1(x)|f(x)+g(x)-f(x)+g(x)=zg(x) 故d1(x)|f(x),d1(x)|g(x),从而d1(x)|d(x) 得证5、证明,g(x)|f(x)的充分必要条件是g2(x)|f2(x) 证明:设f(x)=g(x)h(x), 则f2(x)=g2(x)h2(x)即g2(x)|f(x) 反之,设g2(x)|f2(x),将f(x),g(x)分解f(x)= aP1l1(x)psls(x),g(x)=bp1r1(x)psrs(x) 其中,li ri为非负整数,pi(x)为互不相同的可约多项式那么f2(x)=a2p12l1(x)ps2ls(x),g2(x)=b2p12r
18、1(x)ps2rs(x) 由g2(x)|f2(x),必有2ri2li,即rili于是g(x)|f(x)。6、设f(x)=anxn+an-1xn-1+a1x+a0有n个非零根,证明g(x)=a0xn+a1xn-1+an-1x+an的n个根。证明:设为f(x)的任一非零根,则f()=ann+an-1n-1+a1+ao=0g()=a0()n+a1()n-1+an-1()+an=()n(ann+an-1n-1+a1+ao)=0所以7、设p(x)是次数大于零的多项式,如果对任意多项式f(x),g(x),由p(x|f(x)g(x),可推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式证
19、明:假设p(x)是可约的,设p(x)=p1(x)p2(x)其中 (p1 (x) (p(x), (p2(x) (p(x)显然p(x)|p1(x)p2(x) 但p(x)|P1(x), p(x)|p2(x)这与题设矛盾,即p(x)是不可约的。8、设p(x)是数域p上不可约多项式,f(x)是p上任一多项式,那么p(x)|f(x)或(p(x),f(x)=1证明:设(p(x),f(x))=d(x) 则d(x)|p(x)由p(x)不可约,知d(x)=cp(x), c0,或d(x)=1当d(x)=cp(x)时,就有p(x)|f(x)9、设p(x),q(x)是数域p上两个不可约多项式,证明(p(x)q(x))=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 代数 题库 40

限制150内