分类计数原理与分步计数原理(共5页).doc
《分类计数原理与分步计数原理(共5页).doc》由会员分享,可在线阅读,更多相关《分类计数原理与分步计数原理(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有类办法,在第一类办法中有种不同的方法 ,在第二类办法中有种不同的方法,在第类办法中有种不同的方法,那么完成这件事共有种不同的办法。分步计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第步有种不同方法,那么完成这件事共有种不同的方法。特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有类办法,这类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都
2、能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。二、例题例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?dcab解:(1)不同涂色方法数是:(种)(2)如右图所示,分别用a,b,c,d记这四块,a与c可同色,也可不同色,先考虑给a,c两块涂色,分两类(1) 给a,c涂同种颜色共种涂法,再给b涂色有4种涂法,最后给d涂色
3、也有4种涂法,由乘法原理知,此时共有种涂法(2) 给a,c涂不同颜色共有种涂法,再给b涂色有3种方法,最后给d涂色也有3种,此时共有种涂法故由分类计数原理知,共有+=260种涂法。例2、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项工程,乙公司承包1项,丙、丁各承包2项,问共有_种承包方式?解:由分步计数原理有:种。思维点拔【思维点拔】 解决这类题首先要明确:“完成一件事”指什么?如何完成这件事(即分步还是分类)?进而确定应用分类计数原理还是分步计数原理。 分步计数原理中的“分步”程序要正确。“步”与“步”之间是连续的,不间断的,缺一不可。 分类计数原理中的“分类”要全面, 不能遗漏。“类
4、”与“类之间是并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法中的某一种方法。 例3 电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解: (1) 幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有302920=1740种结果;(3) 幸运之星在乙箱中抽,同理有201930=11400种结果。由分类计数原理,共有 17400+11400=28800 种不同结果。【评述】在综合运用两个原理时,一般先
5、分类再分步。例4 从集合1,2,3, ,10中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组的两数,即子集中的元素取自5个组中的一个数,而每个数的取法有2种,所以子集个数为22222=25=32【评述】本题的关键是先找出和为11的5组数,然后利用分步计数原理求出结果。练习题:在一个正六边形的六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有多少种栽种方案?解:考虑A、C、E种同一种植物,此时共有种
6、方法。考虑A、C、E种二种植物,此时共有种方法。考虑A、C、E种同三种植物,此时共有种方法。故总计有108+432+192=732种方法。三、小结:1分类计数原理和分步计数原理是解决排列、组合问题的理论基础。这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理 。2元素能重复的问题往往用计数原理。3注意:“类”间相互独立,“步”间相互联系。 排列一、内容归纳1知识精讲:(1)排列:从n个不同的元素中取出m个(mn)元素并按一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数: 从n个不同的元素中取出m个(mn)元素的所有排列的个数.(3)排列数公式
7、:.规定 0!=12重点难点: 正确区分排列与组合,熟练应用公式计算排列数3思维方式: 分类讨论的思想.4特别注意:排列数公式的连乘形式常用于计算,公式的阶乘形式常用于化简与证明.二、例题:例1、有7 名学生站成一排,下列情况各有多少种不同的排法。(1)甲、乙必须排在一起;(2)若甲不在排头,乙不在排尾;(3)甲、乙、丙互不相邻;(4)甲、乙之间须隔一个人;(5)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?(6)若将7人分成两排,前四后三,有多少种站法?解:(1)(捆绑法); (2);(3)(插空法); (4);(5); (6)【思维点拨】对于相邻问题,常用“捆绑法”;对于不相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 计数 原理 分步
限制150内