数值分析实验报告-插值、逼近(共10页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数值分析实验报告-插值、逼近(共10页).docx》由会员分享,可在线阅读,更多相关《数值分析实验报告-插值、逼近(共10页).docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实验报告:函数逼近&插值多项式补充问题1:对于给函数,取点,k取0,1,n。n取10或20。试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。问题2:对于给函数在区间-1,1上取xi=-1+0.2i(i=0,1,2,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。实验目的:通过编程实现牛顿插值方法和函数逼近,加深对多项式插值的理解。应用所编程序解决实际算例。实验要求:1 认真分析问题,深刻理解相关理论知识并能熟练应用;2 编写相关程序并进行实验;3 调试程序,得到最终结果;4 分析解释实验结果;5 按照要求完成实
2、验报告。实验原理:详见数值分析 第5版第二章、第三章相关内容。实验内容:(1)问题1:这里我们可以沿用实验报告一的代码,对其进行少量修改即可。当n=10时,代码为:clear allclck=0:10;n=length(k);x1=cos(2*k+1)/2/n*pi);y1=1./(1+25.*x1.2);f=y1(:);for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1)/(x1(i)-x1(i-j+1); endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:n F(i)=F(i-1)*(x-x1(i-1); p(i)=f(i)*
3、F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x2),x,x0);plot(x0,y0,x0,y2)grid onxlabel(x)ylabel(y)由此我们可以得到P10(x)=-46.633*x10+3.0962e-14*x9+130.11*x8-7.2714e-14*x7-133.44*x6+7.1777e-14*x5+61.443*x4-1.5805e-14*x3-12.477*x2-1.6214e-16*x+1.0并可以得到牛顿插值多项式在-1,1上的
4、图形,并和原函数进行对比,得Fig. 1。Fig.1 牛顿插值多项式(n=10)函数和原函数图形当n=20,将上述代码中的“k=0:10;”改为“k=0:20;”即可。由此我们可以得到P20(x)=6466.6*x20+8.0207e-13*x19-34208.0*x18-3.5038e-12*x17+77754.0*x16-99300.0*x14+3.7253e-9*x13+78236.0*x12-39333.0*x10+12636.0*x8-4.6566e-10*x7-2537.3*x6+306.63*x4-21.762*x2+1.0并可以得到牛顿插值多项式在-1,1上的图形,并和原函数进
5、行对比,得Fig. 2。Fig.2牛顿插值多项式(n=20)函数和原函数图形回顾一下实验一的结果(见Fig. 3),我们不难发现,仅仅是改变了x的取值,结果发生了很大的变化。实验一中,插值多项式与原函数产生了很大的偏差,并且随着分的段数的增加,其误差不断变大,但是在本次实验中,我们不难发现,虽然多项式依旧存在震荡现象,但是误差小了很多,而且随着分的段数的增加,插值多项式曲线与原函数曲线已经十分接近了。Fig.3实验一结果这个例子说明:采用切比雪夫节点替代等距节点可以消除龙格现象。(2)问题2:分析问题,发现在这个问题中,我们已经知道了原函数,同时它也告诉我们所需取的11个点的值,所以这里可以用
6、两种方法进行函数逼近得到拟合曲线。首先采用最小二乘法来考虑这个问题,编写代码如下(这里没有直接调用polyfit函数):clear allclcn=3;x1=-1:0.2:1;y1=1./(1+25.*x1.2);syms S G d a x;for i=1:n+1; for j=1:n+1; G(i,j)=sum(x1.(i+j-2); endendfor i=1:n+1; d(i)=sum(x1.(i-1).*y1);enda=G-1*d;for i=1:n+1 X(i)=x(i-1);endS=vpa(X*a,5)x0=-1:0.001:1;y0=subs(S,x,x0);y2=subs
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 实验 报告 逼近 10
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内