2022年勾股定理经典例题.pdf
《2022年勾股定理经典例题.pdf》由会员分享,可在线阅读,更多相关《2022年勾股定理经典例题.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习资料收集于网络,仅供参考学习资料类型一:勾股定理的直接用法1、在 RtABC 中, C=90(1)已知 a=6, c=10,求 b, (2)已知 a=40,b=9,求 c; (3)已知 c=25,b=15,求 a. 思路点拨 : 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。解析: (1) 在 ABC 中, C=90,a=6,c=10,b=(2) 在ABC 中, C=90, a=40,b=9,c=(3) 在ABC 中, C=90, c=25,b=15,a=举一反三【变式】 :如图 B=ACD=90, AD=13,CD=12, BC=3,则 AB 的长是多少 ? 【答
2、案】 ACD =90AD =13, CD=12 AC2 =AD2CD2=132122=25 AC=5 又 ABC=90 且 BC=3 由勾股定理可得AB2=AC2BC2=5232=16 AB= 4 AB 的长是 4. 类型二:勾股定理的构造应用2、如图,已知:在中,. 求: BC 的长 . 思路点拨 :由条件,想到构造含角的直角三角形,为此作于 D,则有,再由勾股定理计算出AD、DC 的长,进而求出BC 的长. 解析 :作于 D,则因,(的两个锐角互余)(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半). 根据勾股定理,在中,. 根据勾股定理,在中,. 精品资料 - - - 欢迎下载
3、 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料. 举一反三 【变式 1】 如图,已知:,于 P. 求证:. 解析:连结 BM ,根据勾股定理,在中,. 而在中,则根据勾股定理有. 又(已知),. 在中,根据勾股定理有,. 【变式 2】已知:如图,B=D=90, A=60, AB=4, CD=2 。求:四边形ABCD 的面积。分析 :如何构造直角三角形是解本题的关键,可以连结AC ,或延长 AB、DC 交于 F,或延长AD 、BC 交于点
4、 E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。解析 :延长 AD、BC 交于 E。 A=60, B=90, E=30。AE=2AB=8 ,CE=2CD=4 ,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12, DE=。S四边形ABCD=SABE-SCDE=AB BE-CDDE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A 点出发,沿北偏东60方向走了到达 B 点,然后再沿北偏西30方向走了500m 到达目的地C 点。( 1)求 A、C 两点之间的距离。( 2)
5、精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料确定目的地C 在营地 A 的什么方向。解析 : (1)过 B 点作 BE/AD DAB= ABE=60 30+CBA+ ABE=180 CBA=90 即 ABC 为直角三角形由已知可得: BC=500m,AB=由勾股定理可得:所以(2)在 RtABC 中,BC=500m ,AC=1000m CAB=30 DAB=60 DAC=30 即点 C 在点 A 的北偏东
6、30的方向举一反三【变式】 一辆装满货物的卡车,其外形高2.5 米,宽 1.6 米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门 ? 【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图所示,点D 在离厂门中线0.8 米处,且 CD,与地面交于H解: OC1 米 (大门宽度一半 ),OD0.8 米 (卡车宽度一半)在 RtOCD 中,由勾股定理得:CD .米,C . . .(米) .(米)因此高度上有0.4 米的余量,所以卡车能通过厂门精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - -
7、 - - - - - -第 3 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分请你帮助计算一下,哪种架设方案最省电线思路点拨 :解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论解析 :设正方形的边长为1,则图( 1) 、图( 2)中的总线路长分别为AB+BC+CD
8、3,AB+BC+CD 3 图( 3)中,在 RtABC 中同理图( 3)中的路线长为图( 4)中,延长EF 交 BC 于 H,则 FH BC,BH CH 由 FBH 及勾股定理得:EA EDFBFCEF12FH1此图中总线路的长为4EA+EF 32.8282.732 图( 4)的连接线路最短,即图(4)的架设方案最省电线举一反三【变式】如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - -
9、-第 4 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料解:如图,在 Rt中,底面周长的一半cm, 根据勾股定理得(提问:勾股定理) AC (cm) (勾股定理) 答:最短路程约为cm类型四:利用勾股定理作长为的线段5、作长为、的线段。思路点拨: 由勾股定理得,直角边为1 的等腰直角三角形,斜边长就等于,直角边为和 1 的直角三角形斜边长就是,类似地可作。作法 :如图所示(1)作直角边为1(单位长)的等腰直角ACB ,使 AB 为斜边;(2)以 AB 为一条直角边,作另一直角边为1 的直角。斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜
10、边、的长度就是、。举一反三【变式】在数轴上表示的点。解析: 可以把看作是直角三角形的斜边,为了有利于画图让其他两边的长为整数,而 10 又是 9 和 1 这两个完全平方数的和,得另外两边分别是3 和 1。作法 :如图所示在数轴上找到A 点,使 OA=3 ,作 AC OA 且截取 AC=1,以 OC 为半径,以 O 为圆心做弧,弧与数轴的交点B 即为。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料类型五:逆命
11、题与勾股定理逆定理6、写出下列原命题的逆命题并判断是否正确1原命题:猫有四只脚 (正确)2原命题:对顶角相等(正确)3原命题:线段垂直平分线上的点,到这条线段两端距离相等(正确)4原命题:角平分线上的点,到这个角的两边距离相等(正确)思路点拨: 掌握原命题与逆命题的关系。解析: 1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上?(正确)4. 逆命题:到角两边距离相等的点,在这个角的平分线上(正确)总结升华: 本题是为了学习勾股定理的逆命题做准备。7、如果ABC 的三边分别为a、b、c,且满足a2+b2+
12、c2+50=6a+8b+10c ,判断 ABC 的形状。思路点拨 :要判断 ABC 的形状,需要找到a、b、c 的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。解析 :由 a2+b2+c2+50=6a+8b+10c ,得 :a2-6a+9+b2-8b+16+c2-10c+25=0, (a-3)2+(b-4)2+(c-5)2=0。 (a-3)20, (b-4)20, (c-5)20。 a=3,b=4,c=5。 32+42=52, a2+b2=c2。由勾股定理的逆定理,得ABC 是直角三角形。总结升华 :勾股定理的逆定理是通过数量关系来研究图形的位
13、置关系的,在证明中也常要用到。举一反三 【变式 1】 四边形 ABCD 中, B=90, AB=3 ,BC=4,CD=12 ,AD=13,求四边形ABCD 的面积。【答案】:连结 AC B=90, AB=3 ,BC=4 AC2=AB2+BC2=25(勾股定理) AC=5 AC2+CD2=169,AD2=169 AC2+CD2=AD2 ACD=90 (勾股定理逆定理)【变式 2】已知 :ABC 的三边分别为m2n2,2mn,m2+n2(m,n 为正整数 ,且 mn),判断 ABC 是否为直角三角形. 分析 :本题是利用勾股定理的的逆定理,只要证明 :a2+b2=c2即可证明:精品资料 - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 勾股定理 经典 例题
限制150内