线性代数试题题库(共20页).doc
《线性代数试题题库(共20页).doc》由会员分享,可在线阅读,更多相关《线性代数试题题库(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上线性代数12级物联网班李沛华一、 填空1. ,则 .2. 设D为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6, 24,则 _.3. 阶矩阵可逆的充要条件是 _,设A*为A的伴随矩阵,则= _.4. 若阶矩阵满足,则= _.5. .6. 已知为阶矩阵, , , 则 .7. 设向量组线性相关,则向量组一定线性 .8.8. 设三阶矩阵,若=3,则= , = . 9. 阶可逆矩阵的列向量组为,则 .10.行列式的值为 .11.设为实数,则当= 且= 时, =0.12.中,的一次项系数是 .13.已知向量组,则该向量组的秩 .14.为阶方阵,且,则= .1
2、5.设是三阶可逆矩阵,且,则.16.已知向量,则的夹角是 .17. 已知,则的模.18.行列式的值为 .19.已知3阶方阵的三个特征值为1,3, 则 .20.二次型对应的矩阵为_.21.中的一次项系数是 .22.已知为33矩阵,且=3,则= .23.向量 ,则= .24. 设阶方阵满足,则.25. 已知向量组线性相关,则=_26. 已知,则向量_.27.中,的一次项系数是 .28. 已知为33矩阵,且,则= _.29. 设,则 .30. 用一初等矩阵右乘矩阵C,等价于对C施行 .31. 设矩阵的秩为2,则 .32. 向量组可由向量组线性表示且线性无 关, 则_.(填)33. 如果线性方程组有解
3、则必有_.34. 已知是三阶方阵,, 则.35. 行列式的值为 .36. 二次型对应的矩阵为 .37. 当= 时, 与的内积为5.38. 若线性无关,而线性相关,则向量组的极大线性 无关组为 .39. 已知,则 .40. 设,则 .41. 若 则 = .42. 若是方阵的一个特征值,则必有一个特征值为_. 43.设,则当满足条件 时,可逆;当= 时,.44.在中,向量在基,下的 坐标为.45.设4阶方阵 的4个特征值为3,1,1,2,则 .46.齐次线性方程组的基础解系是 .47.已知向量与正交,则 _.48. = .49.设3阶矩阵的行列式|=8,已知有2个特征值-1和4,则另一特征值 为
4、.50. 如果都是齐次线性方程组的解,且,则 .51. 向量组线性 (填相关或无关)52. 设和是3阶实对称矩阵的两个不同的特征值,和 依次是的属于特征值和的特征向量,则实数_.53. 如果行列式,则 .54.设,则 .55.设= .56已知3阶方阵的三个特征值为,若 则 .57.设线性方程组的基础解系含有2个解向量,则 .58. 设A,B均为5阶矩阵,则 .59. 设,设,则 .60. 设为阶可逆矩阵,为的伴随矩阵,若是矩阵的一个特征值,则 的一个特征值可表示为 .61. 设向量,则与的夹角 .62. 若3阶矩阵的特征值分别为1,2,3,则 .63. 若,则 .64. 非齐次线性方程组有唯一
5、解的充要条件是_.65. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性方程组 的解空间维数为_.66. 设为三阶可逆阵,则 .67. 若为矩阵,则齐次线性方程组有非零解的充分必要条件 是 .68. 已知行列式,则 .69. 若与正交,则 .70. .71. 设,.则= .72. 设向量与向量线性相关,则= .73. 设是34矩阵,其秩为3,若为非齐次线性方程组的2个不 同的解,则它的通解为 .74. 设是矩阵,的秩为,则齐次线性方程组的一个基础解 系中含有解的个数为 .75. 设向量的模依次为2和3,则向量与的内积 = .76. 设3阶矩阵A的行列式=8,已知有2个特征值-1和4,则另
6、一特征值 为 .77. 设矩阵,已知是它的一个特征向量,则所对应 的特征值为 .78. 若4阶矩阵的行列式,是A的伴随矩阵,则= .79.为阶矩阵,且,则 .80.已知方程组无解,则 .81.已知则 , .82.设三阶方阵A的行列式为其伴随矩阵,则 , .83.三阶方阵与对角阵相似, 则 .84.设均为阶矩阵,且为可逆矩阵,若,则 .85.当 时,向量组线性无关.86.设均为阶矩阵,成立的充分必要条件是 .87.已知的特征值为1,2,5,则B的特征值是 , = .88.矩阵的不同特征值对应的特征向量必 .89.已知n阶矩阵A各行元素之和为0,则.90.已知,则.二、单项选择题1.设是阶方阵,若
7、齐次线性方程组有非零解,则( ).A) 必为0 B) 必不为0 C) 必为1 D) 可取任何值2.已知矩阵满足,则的特征值是( ).A)=1 B)=0 C)=3或=0 D)=3和=03.假设都为阶方阵,下列等式不一定成立的是( ) A) B) C) D)4.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组( ).A)有解 B)没解 C)只有零解 D)有非0解5.矩阵的秩为( ). A)5 B)4 C)3 D)26.下列各式中( )的值为0. A)行列式D中有两列对应元素之和为0 B)D中对角线上元素全为0C)D中有两行含有相同的公因子 D)D中有一行元素与另一行元素对应成比例7. 矩
8、阵可逆,且,则( )A)矩阵 B)矩阵 C)矩阵 D)无法确定8.向量组, 是( ).A)线性相关 B)线性无关 C) D)9.若为三阶方阵,且,则( ).A) B) C) D)10.设为阶矩阵, 如果, 则齐次线性方程组的基础解系所 含向量的个数是( ).A) B) 1 C) 2 D)11.设,为n阶方阵,满足等式,则必有( ).A)或 B) C)或 D)12.和均为阶矩阵,且,则必有( ).A) B) C) D)13. 关于正交矩阵的性质,叙述错误的是( ).A)若是正交矩阵,则也是正交矩阵 B)若和都是正交矩阵,则也是正交矩阵C)若和都是正交矩阵,则也是正交矩阵 D)若是正交矩阵,则或1
9、4.设为矩阵,齐次方程组仅有零解的充要条件是( ).A)的列向量线性无关 B)的列向量线性相关C)的行向量线性无关 D)的行向量线性相关15.阶矩阵为可逆矩阵的充要条件是( ).A) 的秩小于 B) C) 的特征值都等于零 D) 的特征值都不等于零16.设行列式,则行列式( ). A)m+n B)-(m+n) C) n-m D)m-n17.设矩阵=,则等于( ).A) B) C) D)18. 对于一个给定向量组的极大线性无关组的描述,错误的是( )A)极大线性无关组一定线性无关B)一个向量组的极大线性无关组和这个向量组等价C)极大线性无关组中所含向量个数就是向量组的秩D)极大线性无关组一定是唯
10、一的19.设矩阵=,则的伴随矩阵中位于(1,2)的元素是( ). A)6 B)6 C)2 D)220.设是方阵,如有矩阵关系式,则必有( ). A) B) 时 C) 时D) 时21.已知34矩阵的行向量组线性无关,则秩()等于( ).A) 1 B) 2 C) 3D) 422.设两个向量组和均线性相关,则( ).A)有不全为0的数,使和 B)有不全为0的数,使 C)有不全为0的数,使 D)有不全为0的数和不全为0的数,使和23.设矩阵的秩为r,则中( ). A)所有r-1阶子式都不为0B)所有r-1阶子式全为0C)至少有一个r阶子式不等于0D)所有r阶子式都不为024.设是阶方阵,且,则由( )
11、可得出 A) B) C) D)为任意阶方阵.25.设是非齐次线性方程组,是其任意2个解,则下列结论错误的是 ( ). A) 是的一个解B) 是的一个解 C) 是的一个解D) 是的一个解26.设阶方阵不可逆,则必有( ). A) B) C) D)方程组只有零解27.设是一个阶方阵,下列陈述中正确的是( ). A)如存在数和向量使,则是的属于特征值的特征向量 B)如存在数和非零向量,使,则是的特征值 C)的2个不同的特征值可以有同一个特征向量 D)如是的3个互不相同的特征值,依次是的属于的特征向量,则有可能线性相关28.设为阶矩阵,且相似,则( ) A) B)有相同的特征值和特征向量C) 与都相似
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 试题 题库 20
限制150内